Связь больших чисел с константами физики и космотологии

СВЯЗЬ БОЛЬШИХ ЧИСЕЛ С КОНСТАНТАМИ ФИЗИКИ И КОСМОЛОГИИ

АННОТАЦИЯ

На основе выявленной взаимосвязи фундаментальных физических констант исследуется гипотеза больших чисел Дирака. Решается задача определения значений больших чисел и астрофизических констант с точностью, близкой к точности фундаментальных физических констант CODATA 1998. Выявлена глобальная связь, существующая между астрофизическими константами, фундаментальными физическими константами и большими числами.

Установлено, что в основе больших чисел лежит одно большое космологическое число D>o>=4,16650385(15)∙1042, от которого происходят все другие большие числа. Это число имеет фундаментальный статус. Высокая точность, с которой удалось определить значение большого космологического числа D>o >и его фундаментальный статус, позволили найти математические соотношения для вычисления значений постоянной Хаббла H, гравитационной константы G, планковских констант, астрофизических констант и получить их новые значения с высокой точностью. Выявлен единый онтологический базис фундаментальных физических констант и астрофизических констант. Установлено, что у констант, различающихся по своим значениям на 127(!) порядков, существует единство и взаимосвязь, проистекающие от того, что в их основе лежат первичные универсальные суперконстанты h>u>,> >t>u>, l>u>, α, π, которые являются онтологическим базисом физических, астрофизических констант и больших чисел.

ВВЕДЕНИЕ

Ожидается, что наметившаяся тенденция объединения космологии и физики элементарных частиц [2], может привести к новым открытиям, которые помогут раскрыть и понять физические законы, действующие как в микромире, так и в макро- и мегамире. И в физике, и в космологии важную роль играют константы и числа. Особый интерес у физиков вызывают большие числа, которые часто появляются во многих соотношениях физики и космологии [1,3,5]. Значения констант и чисел систематически уточняются. Недавно опубликованы новые рекомендуемые значения фундаментальных физических констант CODATA 1998 [7]. В настоящее время точность фундаментальных физических констант уже достигла 10-9 -10-12[7]. Однако большинство данных, относящихся к Метагалактике, содержат неопределенность от одного до двух порядков величины. Такая же низкая точность и у больших чисел. Такое большое различие в точности (на 10–14 порядков!) делает неэффективным совместное использование физических констант, астрофизических констант и больших чисел в различных формулах и уравнениях и создает препятствие для выявления связей между ними. Поэтому важнейшей задачей является нахождение точных значений астрофизических констант, больших чисел и других величин, относящихся к Метагалактике. Ниже будет приведено решение этой задачи, основанное на исследовании фундаментальных физических и астрофизических констант.Это исследование направленно также на поиск онтологического базиса физических и астрофизичеких констант.

Решение проблемы больших чисел, проведено на основе выявленной глобальной взаимосвязи, существующей между фундаментальными физическими константами [9-17]. Приведенные ниже результаты получены с использованием найденной в [9-15] группы универсальных суперконстант: фундаментального кванта действия h>u> (h>u>=7,69558071(63)•10-37 J s), фундаментального кванта длины l>u> (l>u>=2,817940285(31)•10-15 m), фундаментального кванта времени t>u> (t>u>=0,939963701(11)•10-23 s), постоянной тонкой структуры α (α=7,297352533(27)•10-3 ) и числа π (π=3,141592653589).

    1. ГИПОТЕЗА БОЛЬШИХ ЧИСЕЛ ДИРАКА

В физических уравнениях и в физических теориях часто встречаются большие числа порядка 1039 –1044, и эти же числа во второй и в третьей степени [1,3,5,6]. На особенность больших чисел впервые обратил серьезное внимание П.Дирак. Он получил следующие безразмерные числа[1,3]:

k = e2/Gm>e>m>p>≈1039,

χ = t>U>/e2m>e>c3≈1039,

N = M>U>/m>p>≈1078=(1039)2.

Первое число является отношением электрических и гравитационных сил в атоме водорода, второе число - есть возраст Метагалактики в атомных единицах времени, третье - есть отношение массы Метагалактики к массе протона. Для определения массы Метагалактики Дирак использовал следующее космологическое соотношение [6]:

M>U >= m>p>(hc/Gm>p>2)2 ≈1078 m>p>.

Считая совпадения больших чисел не случайными, П.Дирак сформулировал следующую гипотезу больших чисел [4]: ”В качестве общего принципа можно принять, что все большие числа порядка 1039, 1078 и т.д., встречающиеся в общей физической теории, с точностью до простых числовых множителей равны t, t2 и т.д., где t - время в современную эпоху, выраженное в атомных единицах. Упомянутые простые числовые множители должны определяться теоретически, когда будет создана полная теория космологии и атомизма.”

Гипотеза Дирака привлекла внимание многих исследователей. Было выявлено большое количество совпадений, связанных с числами порядка 1039. В настоящее время магическим большим числом современной физики считается уже не 1039, а 1040 [1,5]. Это магическое число образует семейство чисел типа:

D>n> =(1040)n,

где: n принимает кратные 1/4 значения от 1/4 до 3 [1,5]. Число 1040 получено округлением по порядку величины числа hc/Gm>p>2> >≈1,7х1038 [5]. На допустимость такого округления указывает П.Девис [5], считая, что “по сравнению с 1040 даже 102 пренебрежимо мало”.

Примерами больших чисел являются следующие величины:

    • отношение плотностей фотонов и барионов [1,5]:

n>γ>/n>B>≈D1/4

-отношение времени жизни типичной звезды к планковскому времени [1,5]:

t>H>/t>pl>≈D3/2

-отношение характерного ядерного времени к планковскому времени [1,5]:

t>N>/t>pl>≈D1/2

-количество заряженных частиц во Вселенной [1,5]:

N>q>≈1080=D2

-отношение действия Метагалактики к элементарному действию [6]:

2M>U> c2t>H>/h ≈ 10120 = D3,

-отношение квадрата гравитационного заряда Вселенной к hc [1,5,6]:

GM>H>2/hc ≈ 10120=D3.

Гипотеза Дирака основывалась на предположении о непостоянстве фундаментальных констант, в частности, на изменении гравитационной константы G со временем. Однако эта гипотеза вступила в острое противоречие с опытными данными. Проведенные длительные исследования возможных вариаций фундаментальных констант не выявили ни одного подобного факта [1]. Более того, с большой точностью подтверждены факты неизменности физических констант. Так, например, оценки верхних пределов возможных изменений констант слабого и гравитационного взаимодействий составляют соответственно 10-12 год-1 и 10-10 год-1, а констант электромагнитного и сильного взаимодействий – соответственно 10-17 год-1 и 10-19 год-1 [2]. Оценка верхнего предела возможных изменений константы m>p>/m>e> составляет 10-13 год-1 [2], а констант c, α, h соответственно 10-12 год-1,10-17 год-1, 10-12 год-1 [1]. Все исследования последствий возможных изменений констант показывают, что с фундаментальными константами следует соблюдать осторожность[2]. Исследования показали, что даже незначительные вариации фундаментальных констант привели бы к невозможности существования наблюдаемого мира [2]. Тем не менее, неудача с гипотезой, основанной на предполагаемых вариациях констант, не снизила интереса к большим числам. Выявленное множество совпадений больших чисел все еще нуждается в объяснении. За эту проблему брались многие известные физики. Попытки Эддингтона и других исследователей объяснить совпадения больших чисел на основе физических принципов не увенчались успехом [1]. Альтернативные объяснения совпадения больших чисел, предложенные Дикке, Хойлом, Картером, известные как слабый и сильный антропные принципы, также не решают проблему [1,5]. Как отмечает Аракелян Г.Б.[1]: “Антропный принцип подвергается критике со стороны физиков и особенно философов за спекулятивность, метафизичность, разрыв причинно-следственных связей”. По мнению П.Девиса [5]: “Весьма возможно, что в будущем будут найдены объяснения некоторых из рассмотренных численных совпадений в рамках теоретической физики, а не биологии. В этом случае таинственное число 1040 будет выведено математически”.

В качестве противопоставления антропным принципам возникла идея о множественности Вселенных [1,5]. Такое большое количество столь разных концепций появилось по причине того, что ни одна из физических теорий не смогла отыскать требуемое решение проблемы больших чисел[1]. Бессилие физической теории перед этой проблемой привело к тому, что многие ученые стали предпринимать попытки решать эту задачу методом подбора и привлечением нумерологии. Такая “игра с числами” порой приводила к близким значениям для величин, которые были известны с большой погрешностью, но по мере их уточнения выявлялась бесперспективность и ошибочность такого подхода. Нумерологический подход, основанный на игре с числами, нельзя отнести к научному методу. По словам Г.Б.Аракеляна: ”С помощью нумерологии можно по-разному и на данный момент очень хорошо аппроксимировать любую физическую величину, с какой бы точностью она ни была измерена, но шансы на точное попадание, пользуясь геометрическим образом, в искомую точку на числовой оси здесь крайне незначительны, поскольку вероятность случайного отыскания нецелого числа, неустановленной математической природы чудовищно мала”[1]. Основной причиной обилия нумерологических подходов является очень низкая точность, с которой сегодня известны значения больших чисел. Сегодняшняя точность физических констант уже достигла 7,6х10-12[7] и на этом фоне точность 102 – 103 у больших чисел выглядит резким контрастом, что дает почву для ненаучных подходов к проблеме. Таким же ненаучным является нумерологический подход. Так и осталась эта таинственная проблема совпадения больших чисел не решенной. До сих пор не удалось создать “полную теорию космологии и атомизма”, на что надеялся П.Дирак [4]. Не удалось вывести большие числа математически, как это хотел П.Девис [5]. Не дошло дело и до выяснения истинных значений, упомянутых П.Дираком, “простых числовых множителей” перед большими числами. Все это указывает на то, что проблему больших чисел необходимо решать по-иному. Ниже представлено решение этой проблемы на основе найденных в [9-17] универсальных суперконстант h>u>,t>u>,l>u>,α,π.

2.ТОЧНЫЕ ЗНАЧЕНИЯ БОЛЬШИХ ЧИСЕЛ И КОНСТАНТ

В работах [9-17] было показано, что между фундаментальными физическими константами существует глобальная взаимосвязь и взаимозависимость. Были найдены математические соотношения для большинства фундаментальных физических констант и установлено, что соотношения для констант, таких как, гравитационная константа G, планковские константы, постоянная Хаббла H, содержат большое число D>o> (D>o >= 4,166…∙1042), представляющее собой отношение электрических и гравитационных сил в атоме позитрония. Математические соотношения для констант G, H и планковских констант получены не “игрой c числами”. Они строго следуют из теории, основанной на использовании универсальных суперконстант h>u>,t>u>,l>u>,α,π [9-17]. Соотношения приведенные в [9-17] показывают, что существует не только взаимная связь внутри семейства фундаментальных физических констант, но и общая связь между фундаментальными физическими константами, астрофизическими константами и большими числами. При этом в найденных математических соотношениях рядом стоящими оказались величины, различающиеся по точности на 9–10 порядков. Рядом стоящими оказались: большое число D>0>, фундаментальные физические константы и универсальные суперконстанты. Наименьшая точность оказалась у большого числа D>0>, у планковских констант и у астрофизических констант(102 - 103). Естественным образом возникла потребность иметь близкую или соизмеримую точность у величин, используемых совместно. Для этого необходимо было “подтянуть” точность астрофизических констант и большого числа D>0> к точности фундаментальных физических констант и универсальных суперконстант (10-9 - 10-11). Такая возможность существует и ее открывают, полученные в [9,16] и приведенные ниже специальные соотношения, включающие в себя фундаментальные физические константы, универсальные суперконстанты и большое число D>o>. Покажем это.

Из соотношений для постоянной Хаббла: H =1/2t>u>αD>0>, H=h>u>αD>o>/2l2>cos >m>e, >H => >h>u>/2l2>u >αD>o>m>e>, учитывая экспериментальное значение этой константы H=1,71(17)∙10-18 c-1 (53+5 (км/с)/Мгпс [8]), получим первое приближение для большого числа D>o>. Все три формулы дают значение D>o>=4,26(39)∙1042.

Из соотношений для гравитационной постоянной G, содержащих большое число D>o> [9,16]:G = l>u>3/t>u>2 m>e> D>o>, G = l>u>5/t>u>3h>u>D>o>, G = l>u>4α3/4πt>u>3h>u>R>> D>o>, G = h>u>l>u>/t>u>m>e>2D>0>, G = l>u>4107/e2t>u>2D>o>, G = 2πc3l>u>2/αhD>o>, G = c4l>u> /E>e>D>o>, G = 2l>u>3 αH/t>u> m>e >, G = 2 ћ l>u >α2 H/m>e>2 , учитывая экспериментальное значение этой константы G = 6,673(10)∙10-11 м3 кг-1c-2 [7], получим более точное значение большого числа D>o>. Все формулы дают значение D>o>=4,1664(63)∙1042. Такое же значение для D>o> получается из новых соотношений для планковских констант [9,16]:

m>pl>=h>u>t>u>(D>o>/α)1/2/l>u>2 l>pl>=l>u>(1/D>o >α)1/2 t>pl>=t>u>(1/D>o >α)1/2 T>pl>=T>u>(D>o>/α)1/2 E>pl>=E>e>(D>o>/α)1/2

Значение D>o> во втором приближении содержит 5 цифр, что позволяет уточнить величину постоянной Хаббла. При D>o>=4,1664(63)∙1042 постоянная Хаббла будет равна: H = 1,7495(27)∙10-18 c-1 = 53,984(84) (км/с)/Мгпс, что на три порядка точнее известного на сегодня значения.

Для получения более точного значения D>o> воспользуемся результатами работ [16, 17], где на основе топологической формулы протона

P>p>=2(2(2(2(2(2(2(2(2(2+1)+1)+1)+1)+1)+1)+1)+1)+1)+1

были получены формулы для массы протона, в которые входит большое число D>o>:

Поскольку значения констант m>p>/m>e> и g>e >известны с очень большой точностью [7], эти формулы дают возможность вычислить с большой точностью число D>o>.Высокая точность современных значений фундаментальных физических констант, позволяет знать девять знаков для этого числа [9,16]:

D>o >= 4,16650385(15)∙1042.

Это значение большого числа D>o> находится в пределах чрезвычайно высоких точностей, с которыми известны на сегодня фундаментальные физические константы (CODATA 1998 [7]). Имея такую высокую точность для D>o>, его уже можно применять в математических соотношениях совместно с другими физическими константами. Будем называть большое число D>o> большим космологическим числом. Ниже будет показано, что это большое число имеет фундаментальный статус.

В табл.1 приведены значения большого космологического числа D>o>, полученые различными способами.

Табл.1

Значение

Как получено

D>o>=4,26(39)∙1042

Получено из соотношений для постоянной Хаббла H>0>.

D>o>=4,1664(63)∙1042

Получено из соотношений для гравитационной константы G.

D>o >= 4,16650385(15)∙1042

Получено из отношения масс протон-электрон и из функциональной зависимости D>o>=f(α,π).

Таким образом, удалось получить математически большое космологическое число, на чем акцентировал внимание П.Девис [5], включая и “простые числовые множители”, на что указывал П.Дирак [4]. Это новое, чрезвычайно точное значение большого числа D>o>, порождает совершенно новую ситуацию в физике и в космологии. Прежде всего, впервые появляется возможность получить новые значения гравитационной константы G, планковских констант, постоянной Хаббла H и астрофизических констант с точностью до 9–10 знаков [9,16]. Кроме того, появляется возможность выявить фундаментальную связь между константами различной природы и найти новые более точные их значения. В качестве примера, привожу новые значения для некоторых физических констант, а также значения для астрофизических констант и характеристик Метагалактики:

G = 6,67286742(94)•10-11 m3kg-1 s-2 m>pl>=2,17666772(25)•10-8 kg

l>pl >=1,616081388(51)•10-35 m t>pl>=5,39066726(17)•10-44 s

T>pl >=1,4169345(27)•1032 К, E>pl>=1,22102121•1022 Мэв,

μ>pl >=6,2261028•10-43 Дж/Тл. M>U >= 1,58136631(26)∙1055 кг,

T>MG >= 5,71581539(22)∙1017 c, R>MG>= 1,71355834(10)∙1026 м.,

Н = 1,74953166(10)∙10-18 c-1 = 53,98572(87) (км/с)/Мгпс,

g=980,453 см/c2.

Как видим, новые значения констант имеют большую точность, чем рекомендуемые значения CODATA 1998 для тех же констант [7].

3.БОЛЬШОЕ КОСМОЛОГИЧЕСКОЕ ЧИСЛО D>o>

В таблице 2 приведены формулы планковских констант, выраженные посредством универсальных суперконстант и большого космологического числа и их значения.

Табл.2.

Обозначение

Формула

Значение

m>pl>

h>u>t>u>(D>o>/α)1/2/l>u>2

2,17666772(25)•10-8 kg

l>pl>

l>u>(1/D>o >α)1/2

1,616081388(51)•10-35 m

t>pl>

t>u>(1/D>o >α)1/2

5,39066726(17)•10-44 s

T>pl>

T>u>(D>o>/α)1/2

1,4169345(27)•1032 К

E>pl>

E>e>(D>o>/α)1/2

1,22102121•1022 Мэв

μ>pl>

μ>B>/α(D>o>)1/2

6,2261028•10-43 Дж/Тл

В формулы планковских констант, входят большие числа αD>o>> D>o>, значения которых соответственно равны: 3,04044474(12)∙1040 и 5,70961021(18)∙1044.

В таблице 3 приведены большие числа и их значения.

Табл.3.

Символ

Формула

Значение

Примечание

D>1>

D>2>

D>3>

D>1>=D>o>

D>2>=D>o>2

D>3>=D>o>3

4,16650385(15)∙1042 1,73597543(13)∙1085

7,23294832(78)∙10127

Появляются в формулах для гравитационной константы и астрофизических констант.

D>4>

D>5>

D>4>=αD>o>> >

D>5>=D>o>

3,04044474(12)∙1040

5,70961021(18)∙1044

Появляются в формулах планковских констант.

Как видим, все большие числа происходят от одного большого космологического числа D>o>=4,16650385(15)∙1042. Это единство больших чисел весьма примечательно. Если рассмотреть отношения величин, приводящие к большим числам, то получим следующие значения:

К таким же трем большим числам приводят и многие другие соотношения в физике и космологии. Эти три больших числа представлены степенями большого космологического числа D>o.> Особо подчеркнем, что значения больших чисел, полученных из разных формул, точно совпадают как в показателях степени, так и в числовых множителях. Такое беспрецедентное совпадение значений больших чисел для большого количества соотношений указывает на то, что эти совпадения не случайны. Особое место среди всех больших чисел занимает большое число D>o>. Видно, что основой всех больших чисел является одно число D>o.> Другие большие числа являются составными и включают в себя число D>o>. Например, большое число D, на которое впервые обратил внимание Дирак, выражается с помощью D>o> и фундаментальных физических констант так:

D=m>e>D>o>/m>p>=2,2691489∙1039

Видно, что большое число D является составным, а это значит, что оно не может быть фундаментальным. Число Эддингтона [6]:

N>e >≈ 1079 ≈ M>U>/m>p >

также не является фундаментальным. Оно не следует из теории и получено на основе нумерологического подхода, т.е. подбором чисел. Таким образом, количество больших чисел, претендующих на фундаментальный статус, является строго ограниченным. Можно утверждать, что только большое число D>o> имеет фундаментальный статус. По моему мнению оно должно быть включено в состав фундаментальных физических констант. Большое космологическое число D>o> образует семейство больших чисел вида:

D>i> =(D>o>)n,

где:n=1,2,3.

4.СВЯЗЬ ПЛАНКОВСКИХ И АСТРОФИЗИЧЕСКИХ КОНСТАНТ

Исследования, проведенные автором, показали, что между планковскими константами и астрофизическими константами также существует функциональная связь, в основе которой лежит большое космологическое число D>o> [9 -17]. С помощью универсальных суперконстант h>u>,> >t>u>, l>u> удалось выявить эту взаимосвязь и получить новые соотношения для планковских констант:

t>pl >=t>u>(t>u>•2H)1/2

l>pl >=l>u>(t>u>•2H/c)1/2

m>pl >=h>u>t>u>D>o>(t>u>•2H)1/2/l>u>2

T>pl >=T>u>D>o>(t>u>•2H)1/2

Во все эти соотношения входит большое космологическое число D>o>. Эти формулы показывают, что планковские константы длины, времени, массы, температуры связаны с астрофизическими константами и фундаментальными константами длины, времени, массы и температуры очень красивыми и простыми соотношениями.

Исследования показали, что с помощью универсальных суперконстант можно получить расчетом не только практически все современные фундаментальные физические константы, но и практически все астрофизические константы и большие числа.

5.ЗАКЛЮЧЕНИЕ

Таким образом, выявлена единая природа фундаментальных физических констант и астрофизических констант и установлено, что у констант, различающихся по своим значениям на 127(!) порядков, существует единство и взаимосвязь, основанная на большом космологическом числе D>o>. Учитывая то, что взаимозависимые константы относятся к различным видам физических объектов от микромира до крупномасштабных объектов Вселенной, становится понятным, на чем основано глобальное единство всех физических явлений и законов. Наличие глобальной взаимосвязи у констант различной природы указывает на то, что существует единый онтологический базис для всех констант и больших чисел вне зависимости от их природы. В [9-17] показано, что единым онтологическим базисом для всех размерных и безразмерных констант и больших чисел являются универсальные суперконстанты h>u>,t>u>,l>u>,α,π.

Существование в семействе фундаментальных физических и астрофизических констант большого космологического числа D>o>, от которого происходят все другие большие числа, явилось причиной удивительных совпадений больших чисел в различных физических и космологических соотношениях. В связи с тем, что значения больших чисел не были известны с большой точностью, а имели погрешность 102 - 103, это не позволило ученым открыть большое космологическое число D>o> и раскрыть его фундаментальный статус. По этой же причине не была выявлена связь большого космологического числа D>o> с фундаментальными физическими константами, с астрофизическими константами и с характеристиками Метагалактики. Полученные выше точные значения больших чисел порождают совершенно новую ситуацию в физике и в космологии. Полученные результаты открывают новый подход к созданию единой физической теории, объединяющей теорию физического вакуума, электромагнетизм, гравитацию и космологию. Как видим, и в микромире, и в макромире, и в мегамире, и в большом, и в малом проявляются одинаковые законы. Существование единого онтологического базиса для констант физики и космологии указывает на существование единого онтологического базиса материи. Недаром эта идея проходит основной линией в культурах и религиях разных народов: “Что вверху, то и внизу”, “Как в большом, так и в малом”, “В капле росы отражается весь мир”, “Мир – это зеркало, из которого смотрит на тебя твое собственное отражение”, “Я в каждом из вас”, и т.п.

 

ЛИТЕРАТУРА

1. Г.Б.Аракелян. Числа и величины в современной физике. Ереван, 1989.

2. И.Л.Розенталь. Элементарные частицы и космология. Метагалактика и

Вселенная. УФН, т.167, N8, 1997, с.807.

3. П.А.М.Дирак. Воспоминания о необычайной эпохе.

4. П.А.М.Дирак. Космологические постоянные. В книге: “Альберт Эйнштейн и теория гравитации”. М.,Мир,1979.

5. П.Девис. Случайная Вселенная. М.,Мир,1985.

6. Р.М.Мурадян. Физические и астрофизические константы и их размерные и безразмерные комбинации. Физика элементарных частиц и атомного ядра, т.8, вып.1,1977, с.190.

7.Peter J. Mohr and Barry N.Taylor. “CODATA Recommended Values of the Fundamental Physical Constants:1998” ; Physics.nist.gov/constants. Constants in the category "All constants"; Reviews of Modern Physics, (2000),Vol. 72, No. 2.

8. Г.И.Наан. Красное смещение. БСЭ, т. 13, с.338, 1972.

9. Н.В. Косинов. “Физический вакуум и гравитация”. Физический вакуум и природа, N4, (2000).

10. Н.В. Косинов. “Законы унитронной теории физического вакуума и новые фундаментальные физические константы”. Физический вакуум и природа, N3, (2000).

11. N. Kosinov. “Five Fundamental Constants of Vacuum, Lying in the Base of all Physical Laws, Constants and Formulas”. Physical Vacuum and Nature, N4, (2000).