Взаимодействие нового полиамфолита на основе этил 3-аминокротоната и акриловой кислоты с ионами стронция

МИНИСТЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

СМИПАЛАТИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ ШАКАРИМА

МАГИСТРАТУРА ЕСТЕСТВЕННОГО ФАКУЛЬТЕТА

КАФЕДРА ХИМИИ

Взаимодействие нового полиамфолита на основе этил 3-аминокротоната и акриловой кислоты с ионами стронция

Магистерская диссертация выпускника

магистратуры Темергалиевой К.К.

Научный руководитель д.х.н., профессор

Бимендина Л.А.

СЕМИПАЛАТИНСК - 2004

Введение

Актуальность темы:

Известно, что число полиамфолитов и полимерных бетаинов весьма ограничено. Синтез и исследование новых полиамфолитов представляет большой теоретический и практический интерес. Полиамфолиты, содержащие в полимерной цепи кислотные и основные группы, наиболее близки к полимерам биологического происхождения. Исследование полиамфолитов и их взаимодействий с самыми различными соединениями (комплементарными макромолекулами, белками, ионами металлов, лекарственными веществами и т.д.) интересно с точки зрения моделирования процессов, протекающих в биологических системах, а также возможного использования в различных процессах – в процессах извлечения ионов металлов, разделения, очистки и концентрирования белков, иммобилизации и контролируемого высвобождения лекарственных веществ и т.д.[1,2].

Данная работа посвящена исследованию взаимодействия нового полиамфолита на основе этил 3-аминокротоната и акриловой кислоты (ЭЭАКК-АК) с ионами стронция.

Цель работы:

1) Определение состава и некоторых характеристик синтезированного полиамфолита (влияние ионной силы, рН-среды, качество растворителя, температуры)

2) Исследование комплексообразования в системе сополимер ЭЭАКК/АК- ионы Sr2+ разными методами, определение состава, координационного числа и константы устойчивости, стабильности образующихся комплексов к действию различных факторов- температуры, рН, ионной силы, качества растворителя.

3) Определение возможности образования тройных полимер-металлических комплексов в системе ЭЭАКК/АК – Sr2+-ПЭГ или ПЭЙ.

Научная новизна темы:

Научная новизна данной работы в том, что исследуемый объект является совершенно новым полиэлектролитом, ранее еще не исследованным. Полученные результаты могут быть использованы при извлечении металлов из природных и сточных вод, создании гомогенных и гетерогенных полимерных катализаторов, биомедицинских препаратов, полупроницаемых мембран и полупроводников.

Достоверность полученных данных:

Полученные данные подтверждают присутствие аминных и карбоксильных групп в полимерных цепях, что позволяет рассматривать синтезированный сополимер как новый полиамфолит. Определены содержание карбоксильных и амино-групп в образце синтезированного полиамфолита. Вычислены среднее координационное число и константы устойчивости комплексов полимер-металл. Определили экспериментально состав комплекса.

Перечень сокращений, символов и обозначений

ЭЭАКК-этиленовый эфир аминокротоновой кислоты

АК-акриловая кислота

ППГ-поли-N-пропилен глицин

ПИКЭИ-поли-1-изопропилкарбоксилэтиленимин

ПЭА-полиэтиленаланин

ИЭТ-изоэлектрическая точка

ИЭФ-изоэлектрическая фокусирование

ПЭГ-полиэтилен гликоль

ПЭЙ-полиэтилен имин

2М5ВП-2-метил-5-винил пиперидин

ТПМК-тройные полимер-металлические комплексы

ПЭК-полиэлектролитные комплексы

П4ВП-поли-4-винилпиридин

ПВПБ-поли-4-винилпиридинбетаин

ПВПД-поливинилпирролидон

С-ПЭК-стехиометрические полиэлетролитные комплексы

Н-ПЭК-нестехиометрические полиэлектролитные комплексы

БПЭ-блокирующий полиэлектролит

ЛПЭ-лиофилизирующии полиэлектролит

ГП2М5ВП-гидрогель поли-2-метил-5-винилпиридин

ДДС-додицилсульфат натрия

ДБСNа-додецилбензосульфанат натрия

-вязкость

ПА-полиамфолит

ПЭ-полиэлектролит

Результаты и обсуждения

I-часть:

Сополимер на основе этил 3- аминокротоната и акриловой кислоты (ЭЭАКК/АК), полученный методом радикальной полимеризации согласно ИК –спектроскопии, содержит в полимерной цепи аминные и карбоксильные группы, что позволяет рассматривать сополимер как новый полиамфолит. Содержание карбоксильных и амино-групп в образце синтезированного полиамфолита определялось потенциометрическим титрованием. Рисунок-(__). Состав сополимера, определенный потенциометрическим титрованием равен [ЭЭАКК]:[АК]= 22,99 : 77,01 мол % . Из кривой потенциометрического титрования было рассчитано значение константы диссоциации карбоксильных групп сополимера рК>d> = 7,37. (приложение 1).

Конформационные свойства полиамфолитов сильно зависят от таких факторов как рН, температура, ионная сила, влияние органических растворителей.

Вискозиметрическии были изучены гидродинамические свойства синтезированного сополимера. На рисунке-(__) представлена кривая зависимости приведенной вязкости водного раствора ЭЭАКК/АК от разбавления. Наблюдаемый «полиэлектролитный эффект»-т.е. возрастание значений приведенной вязкости >уд>/С с разбавлением раствора полимера, обусловлен усилением электростатистического взаимодействия между разноименно заряженными звеньями полимерной цепи.

На рисунке-(__) приведена концентрация зависимости приведенной вязкости в 0,1н. растворе КС1. Как видно из рисунка, наблюдается подавление полиэлектролитного эффекта. Известно, что полиэлектролитный эффект подавляется в присутствии низкомолекулярных ионов вследствие «экранирования» противоположно заряженными низкомолекулярными ионами кислотных и основных групп полиамфолита.

Вязкость сополимера от ионной силы представлена на рисунке-(__).

Ионная сила создавалось использованием растворов КС1 различной нормальности. В чистой воде наблюдается полиэлектролитный эффект, вязкость приведенная (>уд>/С). При создании ионной силы при всех значениях = (0,1; 0,3; 0,5; 0,7; 0,9) полиэлектролитный эффект подавляется, поэтому мы имеем значения характерной вязкости [].

Она равна 10,2 (=0,1); 8,2 (=0,3); 4,6 (=0,5); 4,4 (=0,7); и 4,4 (=0,9). При  =1 (1н. КС1) полимер перестает растворяться, выпадает из раствора в осадок, в виде белых хлопьев.

С целью изучения влияния температуры на гидродинамические поведения синтезированного сополимера была исследована зависимость вязкости от температуры. Температурная зависимость вязкости ЭАКК/АК показана на рисунке-(__). Как видно из рисунка вязкость раствора ЭЭАКК/АК при 250 С составляет 10,2 дл/г, а при 400 и 600 она вырастает до16,9 17,5 дл/г. Рост вязкости в интервале 250 и 400 С очевидно обусловлен ослаблением гидрофобного взаимодействия. Следствием этого является разворачивание молекулы сополимера. При 600С вязкость сополимера по сравнению с вязкостью при 400С изменяется незначительно (17,5). При 800С вязкость сополимера исследовать не удалось. Как видно из приведенных данных температура значительно влияет на размеры молекулы сополимера ЭЭАКК/АК.

Изучено влияние смешанного растворителя 0,1н КС1:С>2>5>ОН на вязкость сополимера ЭЭАКК/АК. Известно, что органические растворители подавляют диссоциацию карбоксильных групп [ ], поэтому полиэлектролитный эффект в присутствии органических растворителей подавляется и зависимость >уд>/С носит прямолинейный характер. Гидродинамическое поведение макромолекул полиамфолита в смесях показывает отношение термодинамического качества растворителя к гидрофильно- гидрофобным участкам полимерной цепи. На рисунке-(__) показана зависимость вязкости сополимера от состава смешанного растворителя 0,1н КС1:С>2>5>ОН. Из рисунка видно, что с увеличением количества органического растворителя (С>2>5>ОН) вязкость снижается до []=3,0 и остается постоянной. Вероятно, это связано с ухудшением термодинамического качества растворителя и усилением гидрофобных взаимодействий. При соотношении  50 об% этанола сополимер не растворяется.

Так как синтезированный полиамфолит содержит одновременно и кислотные и основные группы, в зависимости от рН-среды он может вести себя как кислоты или как основания, т.е. как поликатион или полианион. Значение рН-раствора полиамфолита при котором средний суммарный заряд на цепи равен нулю называется изоэлектрической точкой (ИЭТ). Как известно, вязкость полиамфолита в ИЭТ минимальна. На рисунке –(__) показана влияние рН-среды на вязкость сополимера ЭЭАКК/АК. Из рисунка видно, что вязкость сополимера минимальна в области рН 2,0-2,5, следовательно, ИЭТ сополимера находится в этой области.

II-часть.

Для получения количественной информации по взаимодействию в системе полимер-металл широко используются метод рН-метрического титрования. Его можно применять в тех случаях, когда лиганд способен протонироваться и известно его рК>>. Метод основан на конкуренции за лиганд между ионом металла и протоном.

РН-метрическое титрование образующихся полимер-металлических комплексов проводили с различным мольным соотношением [металл]:[лиганд].

На рисунке (__) приведены кривые потенциометрического титрования растворов чистого сополимера и при разных соотношениях [полимер]:[металл]= 1:1; 2:1; 4:1; 6:1 раствором 0,1н. КОН. Смещение кривых титрований, в присутствии металла, в области более низких значениях рН по сравнению с кривой титрования самого лиганда указывает на появление в растворе избыточных ионов водорода, освободившихся за счет комплексообразования. Как видно из рисунка в присутствие металла все кривые распологаются ниже кривой свободного сополимера. При всех соотношениях [сополимер]:[металл] начальные значения рН (рН) имеют более низкие значения по сравнению с начальными значениями рН чистого сополимера (рН=6,7).

Кривые титрования были преобразованы в кривые образования согласно методу Грегора. Рисунок-(__). Кривые образования позволяют определить среднее координационное число и константу устойчивости комплексов полимер-ион металла. В таблице №1 приведены полученные результаты.

Среднее координационное число и константа устойчивости комплексов ЭЭАКК/АК

Таблица №1.

[сополимер]:[Sr2+]

РН (исх.)

lg 

К>уст.>

1:1

2:1

4:1

6:1

5,44

5,32

5,95

5,55

0,5

1,0

1,0

2,0

-4,50

-3,80

-4,20

-4,15

6,99.10-5

1,58.10-4

6,31.10-5

7,00.10-5

Как видно из таблицы, наибольшее смещение (рН=1,38) по рН и наибольшее К>уст> получено для соотношения [сополимер]:[Sr2+]. Среднее координационное число для комплекса [сополимер]:[Sr2+] = 2:1 равно единице, т.е. только 1 вакансия иона комплексообразователя занята функциональной группой полимера, все остальные вакансии заняты молекулами низкомолекулярного вещества, чаще всего воды.

Комплексообразование в системе ЭЭАКК/АК-Sr2+ было изучено дополнительно вискозиметрическим методом. Вязкость в присутствии ионов Sr2+ падает, что свидетельствует об образовании полимер-металлического клубка где роль сшивающего агента играют ионы металла.

Изучено влияние различных факторов (температура, ионнаяч сила, природа растворителя, рН-среды) на стабильность комплекса ЭЭАКК/АК-Sr2+. Так как, по рН-метрическим данным наиболее устойчивым является комплекс ЭЭАКК/АК-Sr2+=2:1 дальнейшее исследования проводили при этом соотношении.

На рисунке-(__), кривая - отображает поведение полимер-металлического комплекса от ионоой силы. При малых значениях  (0,1; 0,3;) вязкость раствора значительно снижена (>уд>/С =6,52; 6,50) по сравнению с вязкостью самого сополимера ([]=10,20; 8,20) при этих же значениях ионной силы. При дальнейшем увеличении   0,5 вязкость комплекса падает и практически не превышает вязкости самого сополимера. Вероятно, ионная силы способствует стабилизации комплекса.

Кривая рисунка показывает влияние температуры на вязкость комплекса ЭЭАКК/АК-Sr2+. С ростом температуры наблюдается незначительное увеличение >уд>/С (4,13; 4,53; 4,96). Вязкость при 800С исследовать не удалось вследствие выпадения комплекса в осадок. По сравнению с вязкостью сополимера вязкость комплекса имеет низкие значения, что свидетельствует об устойчивости полимер-металлического комплекса к воздействию температуры.

Влияние смешанного растворителя (0,1н КС1: С>2>5>ОН) на комплекс показано на рисунке-(__), кривая –2. Ход вискозиметрической кривой аналогичен кривой вязкости ЭЭАКК/АК. Значения >уд>/С комплекса более минимальны. Больше 50 об% С>2>5>ОН исследовать не удалось вследствие выпадения комплекса в осадок.

Зависимость вязкости комплекса ЭЭАКК/АК-Sr2+ от рН изображает кривая –2 рисунка-(__). Как видно из рисунка, в присутствии ионов - Sr2+ область ИЭТ выражена незначительно и смещена в сторону рН=2,5-3,0. Кроме того, вязкость комплекса в этой области несколько превышает вязкость самого сополимера. При значениях же рН=4-12 наблюдается скручивание полимер-металлического клубка. Такое поведение возможно связано с тем, что некоторые синтетические полиамфолиты [ ] способны связывать ионы металлов при определенных значениях рН и частично высвобождать их в области ИЭТ из-за сильного электростатического притяжения между противоположенно заряженными участками полиамфолита.

III-часть

Известно, что сополимер ЭЭАКК/АК способен образовывать комплексы с комплементарными полимерами, например полиэтиленгликолем (ПЭГ) [ ]. Состав комплекса ЭЭАКК/АК-ПЭГ равен 1:1. В свою очередь и ЭЭАКК/АК, и ПЭГ способны образовывать комплексы с ионами стронция [ ].

В данной работе было изучено возможность образования тройных полимер-металлических систем: комплексы [ЭЭАКК/АК]:[ПЭГ]= 1:1 в присутсвии ионов Sr2+; комплексы [ЭЭАКК/АК]:[ Sr2+]=2:1 в присутствии ПЭГ; комплексы [ПЭГ]:[ Sr2+]=1:1 в присутствии ЭЭАКК/АК. На рисунке-(__) изображены рН-метрические кривые кривые образования тройного полимер-металлического комплекса (ТПМК). Как видно из рисунка для систем [ЭЭАКК/АК-ПЭГ]: [Sr2+ ] и [ПЭГ-Sr2+]:[ЭЭАКК/АК] наблюдаются перегибы на кривых титрования, что согласно основам физико-химического анализа свидельствует о взаимодействии и образовании ассоциатов определенного состава. Система же [ЭЭАКК/АК- Sr2+]:[ПЭГ] обнаруживает монотонное изменение рН. Это указывает на отсутствие взаимодействия в этих тройных системах.

Выводы

1. Реакция присоединении Михаэля с последующей радикальной полимеризацией синтезирован новый полиамфолит на основе этил-

3- аминокротоната и акриловой кислоты. Определен состав сополимера, равный [ЭЭАКК]:[АК]=22,99:77,01мол%.

    Изучено поведение синтезированного сополимера от ионной силы, смешанного растворителя, температуры, рН-среды. Обнаружено, что с ростом ионной силы полиэлектролитный эффект, обнаруживаемый в водных растворах полностью подавляется. Поведение полимерных частиц в смешанных растворителях обусловлено термодинамическим качеством растворителя и гидрофобно- гидрофильным балансом в смесях различного состава. Температура в интервале 25-600С существенно влияет на размеры макромолекулы. Определена ИЭТ сополимера, которая находится в области рН 2,0-2,5.

    Изучено образование бинарных и тройных полимер-металлических комплексов в системах [ЭЭАКК/АК-Sr2+] и [ЭЭАКК/АК-Sr2+-ПЭГ].

Определены средние координационные числа и константы устойчивости для комплексов [сополимер]:[Sr2+]= 1:1; 2:1; 4:1; 6:1. Определен состав комплексов, равный [сополимер]:[Sr2+]= 2:1.

Обнаружено, что образование тройного полимер-металлическогоо комплекса возможно для систем [ЭЭАКК/АК-ПЭГ]: [Sr2+ ] и [ПЭГ-Sr2+]:[ЭЭАКК/АК].

    Изучено влияние на комплекс ЭЭАКК/АК-Sr2+ =2:1 действий смешанного растворителя, ионной силы, температуры, рН. Обнаружено, что образующийся полимер-металлический комплекс устойчив к действию температуры, смешанного растворителя, ионной силы. Эти факторы способствуют компактизации полимер-металлического клубка. Выявлено, что в близи ИЭТ происходит высвобождение ионов металла вследствие сильного электростатического притяжения между противоположно заряженными участками полиамфолита.

Рецензия

на магистерскую работу Темергалиевой Кумисжан Кыдыргалиевны

на тему: “ Исследование комплексообразования в системах сополимер этилового эфира аминокротоновой кислоты / акриловой кислоты- ионы Sr2+”.

Работа магистранта Темергалиевой Кумысжан посвящена исследованию взаимодействия нового полиамфолита на основе этил 3-аминокротоната и акриловой кислоты (ЭЭАКК-АК) с ионами стронция. Полиамфолит на основе этил 3-аминокротоната и акриловой кислоты (ЭЭАКК-АК) был синтезирован реакцией присоединения Михаэля с радикальной последующей полимеризацией. Этил 3-аминокротонат (ЭЭАКК) фирмы “Aldrich”, степень чистоты 99%, использовался без дополнительной очистки.

Акриловая кислота (АК) фирмы “Aldrich”, степень чистоты 99,5%, использовалась без дополнительной очистки.

Полиамфолит на основе ЭЭАКК и АК получается реакцией радикальной полимеризации в массе, в воде, в этаноле и в смесях вода-этанол (1:1 по объему). ЭЭАКК (1,9 мл, 0,5 моль) и АК (1,1 мл, 0,5 моль) помещаются в стеклянную ампулу, добавляется инициатор –2,2-азобисизобутиронитрил (3 мг) и соответствующий растворитель (мольное отношение растворителя и мономерной смеси всегда 1:1). Через смесь пропускают аргон в течение 5 мин и затем термостатируют при 70ºС в течение 2-3 мин. Образующийся полимер промывается ацетоном несколько раз и высушивается под вакуумом до постоянного веса.

Потенциометрическое титрование линейного полиамфолита осуществлялось с помощью рН/кондуктометра “Mettler Toledo, MPC 227” (Швейцария).

Вязкость растворов полимеров измерялась в вискозиметрах Уббелоде. Использованные химические реактивы и растворители соответствовали марке “хч” и “чда”.

Данные подтверждают присутствие аминных и карбоксильных групп в полимерных цепях, что позволяет рассматривать синтезированный сополимер как новый полиамфолит.

Содержание карбоксильных и амино-групп в образце синтезированного полиамфолита определялось потенциометрическим титрованием. Состав использованного сополимера, определенный потенциометрическим титрованием кислотных и основных групп, равен [ЭЭАКК]: [АК]=22,99:77,01 моль %. Из кривой потенциометрического титрования было рассчитано значение константы диссоциации карбоксильных групп сополимера рК>=7,37>.>

Ранее было показано, что сополимер этил 3-аминокротоната и акриловой кислоты линейной и слабо сшитой структуры весьма склонен к реакциям комплексообразования с ионами переходных металлов. Однако, взаимодействие этого сополимера с ионами стронция не было изучено.

Для определения среднего координационного числа иона-комплексообразователя были оттитрованы растворы сополимера и соли стронция (С=1.10-2моль/л) в отношении [сополимер]: [Sr2+]=1:1; 2:1; 4:1 и 6:1 0,1 н раствором щелочи. Кривые титрования в присутствии соли расположены ниже кривой титрования чистого сополимера, что связано с выделением в раствор протонов вследствие образования комплекса полимер-ион металла. Наибольшее смещение рН наблюдается для отношения [сополимер]: [Sr2] =2:1 (рН=5,3 по сравнению с рН чистого полиамфолита рН=6,7).

Кривые образования позволяют определить среднее координационное число и константу устойчивости комплексов полимер-ион металла. Наибольшее значение К>уст>, как и наибольшее смещение по рН получено для соотношения [сополимер]: [Sr2]=2:1. Среднее координационное число для комплекса [сополимер]: [Sr2]=2:1 равно единице, т.е. только одна вакансия иона-комплексообразователя занята функциональной группой полимера.

Таким образом, показана возможность образования тройных полимер-металлических комплексов и комплексов полимер-ион металла для системы сополимер этилового эфира аминокротоновой кислоты/ акриловой кислоты- ионы Sr2+.

Темергалиевой Кумысжан проведена большая экспериментальная работа, полученные результаты грамотно интерпретированы. Считаю, что по постановке задачи, объему выполненной работы, полученным результатам и их интерпретации работа Темергалиевой Кумысжан на тему «Исследование комплексообразования в системах сополимер этилового эфира аминокротоновой кислоты/ акриловой кислоты-ионы Sr2+» соответствует требованиям, предъявляемым к магистерским диссертациям, а сама Темергалиева Кумысжан заслуживает присуждения академической степени магистра.

Реферат

Тема: «Исследование комплексообразования в системах сополимер этилового эфира аминокротоновой кислоты / акриловой кислоты – ионы Sr2+ стронция»

Объектом исследования является новый полиамфолит на основе этил 3-аминоктротоновой (ЭЭАКК) и акриловой кислоты (АК), синтезированный реакцией присоединения Михаэля с последующей радикальной полимеризацией.

Цель работы: исследование свойств нового полиамфолита и изучение возможности образования бинарных и тройных полимер-металлических комплексов.

Работа выполнена на кафедре химии Семипалатинского Государственного университета имени Шакарима.

В работе были использованы методы вискозиметрии и потенциометрии.

Были исследованы:

    Гидродинамические свойства самого полиамфолита в зависимости от ионной силы, температуры, природы органического растворителя, рН-среды.

    Возможность образования комплекса полимер-металл и стабильность его к действию различных факторов (ионная сила, температура, природа органического растворителя, рН-среды).

    Возможность образования тройного полимер-металического комплекса в системе ЭЭАКК/АК-Sr2+-ПЭГ

Экспериментальная часть

Получение и очистка исходных веществ

Мономер : СООС>2>5>

Этил 3-аминокротонат (ЭЭАКК) [-СН>2>-СН-СН-]>m>

NH>2>

был синтезирован реакцией присоединения Михаэля с последующей радикальной полимеризацией. Этил 3-аминокротонан (ЭЭАКК) фирмы

“Aldrich”, степень чистоты 99%, использовался без дополнительной очистки.

Акриловая кислота (АК) [CH>2>-CH-]>n>

COOH

фирмы “Aldrich”, степень чистоты 99,5%, использовалась без дополнительной очистки.

Полиамфолит на основе ЭЭАКК и АК получается реакцией радикальной полимеризации в массе, в воде, в этаноле и в смесях вода-этанол (1:1 по объему). ЭЭАКК (1,9 мл, 0,5 моль) и АК (1,1 мл, 0,5 моль) помещаются в стеклянную ампулу, добавляется инициатор –2,2-азобисизобутиронитрил (3 мг) и соответствующий растворитель (мольное отношение растворителя и мономерной смеси всегда 1:1). Через смесь пропускают аргон в течение 5 мин и затем термостатируют при 70ºС в течение 2-3 мин. Образующийся полимер промывается ацетоном несколько раз и высушивается под вакуумом до постоянного веса.

Динитрил азоизомасляной кислоты (ДАК) NC-C(CH>3>)>2>-N-N-C(CH>3>)>2>-CN Марки «ч» дважды перекристаллизовывали из абсолютного этанола.

Т>пл>= 374 К.

Полимер

Полиэтиленгликоль (ПЭГ) –(СН>2>-СН>2>-О-)- использовали полимерический оразец М>W >= 4*103 .

Полиамфолит этиленовый эфир аминокротоновой кислоты/ акриловая кислота (ЭЭАКК/АК)

O

(CH>2>-C=CH-C )>n> (-CH>2>-CH-)>n>

NH>2> OC>2>H>5 > COOH

Растворители:

Этиловый спирт (С>2>5>ОН)- очищали обычной перегонкой.

Т>кип.> = 56,24 С0; n20>g> =1,3558; 20 = 0,7908.

Соль

Нитрат стронция Sr(NO>3>)>2>- марки «ч.д.а.» использовали без дополнительной очистки.

Оборудование

Весы аналитические «Весы лабораторные равноплечие ВЛР-200» 2-го класса модели, весы лабораторные технические марки «OWA LABOR» NAGEMA, шкаф сушильный электрический прямоугольный «ГП-20», вискозиметр Убеллоде, термостат «UTU-4», рН-метр «иономер ЭВ-74», секундомер CОС пр-2б-2-000 «Агат», концентрационный фотоколориметр марки «КФК-2».

Методы исследования

рН-метрическое титрование проводили при помощи иономера ЭВ-74 (точностью измерения + 0,05 ед рН) со стеклянными и хлорсеребряными электродами. Титрование проводили при температуре t-250С и постоянной силе раствора (М=0,1). Ионную силу создали раствором нитрата калия. Исходные растворы раствора нитрата стронция стандартизовали комплексонометрическим титрованием NaЭДТА по госту 10398-76 в присутствии индикатора мурексида. Значение титра КОН определили титрованием НС1, приготовленного из стандарт титра (фиксонала) в присутствии индикатора. Градуировку электродной системы осуществляли до и после каждого титрования по стандартными буферными растворами в интервале рН =1-12,5.

В стакан для титрования наливают 10 мл соответствующей соли (Sr(NO>3>)>2>). Титрование ведут 0,1 н. раствором NaOH при постоянном перемешивании из микробюретки. Измерение рН производят через каждые 0,05 мл добавленной щелочи до рН-12. Результаты отображают в виде графика, где на оси абцисс- объем прилитой щелочи. Константу устойчивости образованных комплексов рассчитывали по модифицированному методу Бьеррума. Среднее координационное число n- при определенных концентрациях металла и лиганда рассчитывается по уравнению:

n = [At]-[AH]-[A]

[Mt]

где-[At],[Mt]- общая концентрация лиганда и ионов металла;

[AH],[A]- концентрация протонированных и свободных (не вступивших в комплексообразование) лигандных групп. Концентрация свободного лиганда определяются непосредственно из калибровочного графика, построенного по данным титрования.

Вязкость растворов водных и водно-солевых растворов измеряем в капиллярных вискозиметрах Убеллоде в термостатируемой камере при 25 + 0,10С и вычисляем по формуле:

> пр >= >уд> / С.

где->уд > = (->0>)/>0>; >0> – время истечения чистого растворителя, - время истечения раствора, С- концентрация полимера г/дл.

Рассчитанное количество ЭЭАКК/АК растворяют в 0,1 н. КС1, фильтруют через фильтр Шотта. Отбирают 5 мл этого раствора и наливают в ячейку вискозиметра, помещенного в термостат, где поддерживается постоянная температура. Вискозиметр представляет собой капиллярную трубку, соединенную с измерительным шариком. Вискозиметр погружен в термостат. Раствор засасывается грушей из резервуара вискозиметра в шарик выше верхней метки над измерительным шариком. Измеряется время истечения жидкости между верхней и нижней метками измерительного шарика. Вязкость каждого раствора измеряется 3-раза. Определяется время истечения раствора полимера () после каждого разбавления Результаты представляются графически в виде зависимости > >>уд> / С от С.

0

V>исх. 5мл>

>1>(+0,5)

>2>(+1,0)

>3>(+1,5)

>4>(+2,0)

С,г/дл

>уд>=/-1

>уд> / С ,дл/г

319,6

319,4

319,5

310,0

310,0

310,0

305,0

305,0

305,0

297,2

297,2

297,4

293,0

293,0

293,0

0,27690

0,24011

0,21850

0,18740

0,17060

0,06281

0,05911

0,05583

0,05289

0,05024

4,4085

4,0621

3,9173

3,5432

3,3954

Приложение-1

Определение рК>>> >полиамфолита.

РН

1-

Lg

1-

рН – lg

1-

6,61

6,81

7,06

7,27

7,47

7,67

7,88

8,09

8,29

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

-0,9452

-0,6020

-0,3679

-0,1760

0

0,1760

0,3679

0,6020

0,9452

7,56

7,41

7,43

7,44

7,47

7,50

7,51

7,48

7,34

рН – lg

1-

-

7,6 -

*

7,5 - *

*

7,4 - *

7,3 -

7,2 -

7,11 >|> >|> >|> >|> >|> >|> >|> >|> >|> 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Кривые образования комплекса ЭЭАКК/АК-Sr2+ при соотношениях [полимер]:[металл]= 1:1; 2:1; 4:1; 6:1.


n

2 -

(4)

1,5 -

( 2)

1,0 -

(3)

0,5 - (1)

| | | | | |

-6 -5 -4 -3 -2 -1 p [HA]

[H+]

Среднее координационное число комплексов полимер –Sr+2

1- [сополимер]:[Sr+2]= 1:1; 2- [сополимер]:[Sr+2]= 2:1;

3- [сополимер]:[Sr+2]= 4:1; 4- [сополимер]:[Sr+2]= 6:1;

Рисунок-9

Концентрационная зависимость приведенной вязкости сополимера в воде.

>уд>/С

24,0 -

*

20,0 -

*

16,0 -

12,0 - *

8,00 – *

*

4,00 - *

>| > >|> >|> С, г/дл.

0,1 0,2 0,3

Рисунок-2

Концентрационная зависимость характеристической вязкости ЭЭАКК/АК в 0,1н. КС1.

>уд>/С

28,0 -

24,0 -

20,0 - *

16,0 - *

12,0 - *

8,00 – *

4,00 -

>| > >|> >|> С, г/дл.

0,1 0,2 0,3

Рисунок-3

Влияние ионной силы на вязкость сополимера ЭЭАКК/АК (1) и комплекса ЭЭАКК/АК-Sr2+(2)

>уд>/С

12,0-

10,0- *

8,0 - *

6,0 - * *

* *

4,0 – * * (2)

* * ___ ___ ___

2,0 - (1)

>| > >|> >| | | | | |> ;н КС1

0,2 0,4 0,6 0,8 1,0 1,1 1,2 1,3

Рисунок-4

Кривая определения состава сополимера методом рН- метрического титрования

Рисунок-1

Кривые рН-метрического титрования сополимера ЭЭАКК/АК (1) в присутствии ионов Sr2+ при соотношениях [полимер]:[металл]= 1:1(2); 2:1(3); 4:1(4); 6:1(5).



Рисунок- 8

Кривые рН-метрического титрования сополимера ЭЭАКК/АК (1) в присутствии ионов Sr2+ при соотношениях [полимер]:[металл]= 2:1(2)

З
ависимость вязкости сополимера ЭЭАКК/АК (1) и комплекса ЭЭАКК/АК-Sr2+ (2) от смешанного растворителя (0,1н КС1:С>2>5>ОН)

д/>С д/


10,0 -*

8,0 - *

* *

6,0-*

*

4,0 -

(2) * * __ __ __(1)

2,0 - * * * ­­

| | |

0,1н КС1 50% об. С>2>5>ОН

Рисунок-5

Зависимость вязкости сополимера ЭЭАКК/АК (1) и комплекса ЭЭАКК/АК-Sr2+ (2 ) от рН-среды

lg >уд>/С


2,2 –

2,0 -

1,8 - (1)

* *

1,6 - * (2)

*

1,4 - * *

*

1,2 - *

*

1,0 - *

* *

0,8 - *

*

0,6 - *

0,4 | | | | | | | | | | рН

1 2 3 4 5 6 7 8 9 10

Рисунок-6

Зависимость вязкости сополимера ЭЭАКК/АК (1) и комплекса ЭЭАКК/АК-Sr2+ (2) от температуры.

>уд>/С


20,0 -

16,0 -

* (1)

12,0 - *

8,0 -

* * * (2)

4,0 - *

| | | Т

20 0 400 600

Рисунок-7

Кривые образования тройных полимер-металлических комплексов в системе ЭЭАКК/АК-Sr2+-ПЭГ

    [Sr2+]/ [ПЭГ-ЭЭАКК/АК];

2 – [ЭЭАКК/АК]/[ПЭГ-Sr2+];

3 - [ПЭГ]/[Sr2+-ЭЭАКК/АК];

Рисунок –10