Химическая структура, биохимические свойства и ферменты бактерий

Реферат:

Химическая структура, биохимические свойства и ферменты бактерий

1. Химическая структура, биохимические свойства и ферменты бактерий

Клетка - универсальная единица живой материи. По химическому составу существенных отличий прокариотических и эукариотических клеток нет.

Химические элементы, входящие в состав живой материи, можно разделить на три основные группы.

1. Биогенные химические элементы (С, О, N, H). На их долю приходится 95% сухого остатка, в т.ч. 50%- C, 20%- O, 15%- N, 10%- H).

2. Макроэлементы- P, S,Cl, K, Mg, Ca, Na. На них приходится около 5 %.

3. Микроэлементы- Fe, Cu, I, Co, Mo и др. На них приходятся доли процента, однако они имеют важное значение в обменных процессах.

Химические элементы входят в состав различных веществ - воды, белков, липидов, нейтральных жиров, углеводов, нуклеиновых кислот. Синтез соединений контролируется генами. Многие вещества бактериальная клетка может получать извне - из окружающей среды или организма хозяина.

Вода составляет от 70 до 90 % биомассы. Содержание воды больше у капсульных бактерий, меньше всего - в спорах.

Белки встречаются во всех структурных элементах клетки. Белки могут быть более простые (протеины) и сложные (протеиды), в чистом виде или в комплексе с липидами, сахарами. Выделяют структурные (структурообразующие) и функциональные (регуляторные) белки, к последним относятся ферменты.

В состав белков входят как обычные для эукариотов аминокислоты, так и оригинальные - диаминопимелиновая, D-аланин, D-глютанин, входящие в состав пептидогликанов и капсул некоторых бактерий. Только в спорах находится дипиколиновая кислота, с которой связана высокая резистентность спор. Жгутики построены из белка флагеллина, обладающего сократительной способностью и выраженными антигенными свойствами. Пили (ворсинки) содержат особый белок - пилин.

Пептидную природы имеют капсулы представителей рода Bacillus, возбудителя чумы, поверхностные антигены ряда бактерий, в том числе стафилококков и стрептококков. Белок А - специфический белок S.aureus - фактор, обусловлавливающий ряд свойств этого возбудителя. Белок М - специфический белок гемолитических стрептококков серогруппы А, позволяющий дифференцировать серовары (около 100), что имеет эпидемиологическое значение.

Ряд белков содержит наружная мембрана грамотрицательных бактерий, из которых 3 - 4 мажорных (основных) и более 10- второстепенных, выполняющих различные функции. Среди мажорных белков - порины, образующие диффузные поры, через которые в клетку могут проникать мелкие гидрофильные молекулы.

Белки входят в состав пептидогликана- биополимера, составляющего основу бактериальной клеточной стенки. Он состоит из остова (чередующиеся молекулы двух аминосахаров) и двух наборов пептидных цепочек - боковых и поперечных. Наличие двух типов связей- гликозидных (между аминосахарами) и пептидных, которые соединяют субъединицы пептидогликанов, придают этому гетерополимеру структуру молекулярной сети. Пептидогликан- наиболее устойчивое соединение, которое образует ригидную мешковидную макромолекулу, определяющую постоянную форму бактерий и ряд их свойств.

1. Пептидогликан содержит родо- и видоспецифические антигенные детерминанты.

2. Он запускает классический и альтернативный пути активации системы комплемента.

3. Пептидогликан тормозит фагоцитарную активность и миграцию макрофагов.

4. Он способен инициировать развитие гиперчувствительности замедленного типа (ГЗТ).

5. Пептидогликан обладает противоопухолевым действием.

6. Он оказывает пирогенное действие, т.е. вызывает лихорадку.

Из соединений белков с небелковыми компонентами наибольшее значение имеют липопротеиды, гликопротеиды и нуклеопротеиды.

Удивительное таинство жизни - синтез белка осуществляется в рибосомах. Существует два основных типа рибосом - 70S (S- константа седиментации, единица Сведберга) и 80S. Рибосомы первого типа встречаются только у прокариотов. Антибиотики не действуют на синтез белка в рибосомах типа 80S, распространенных у эукариотов.

Липиды (главным образом форфолипиды) содержатся в цитоплазматической мембране (липидный бислой), в также в наружной мембране грамотрицательных бактерий. Есть микроорганизмы, содержащие большое количество липидов (до 40% сухого остатка)- микобактерии. В состав липидов входят различные жирные кислоты, весьма специфичные для разных групп микроорганизмов. Их определение имеет в ряде случаев диагностическое значение, например у анаэробов, микобактерий.

У микобактерий туберкулеза в составе липидов имеется ряд кислотоустойчивых жирных кислот - фтионовая, миколовая и др. Высокое содержание липидов и их состав определяют многие свойства микобактерий туберкулеза:

-устойчивость к кислотам, щелочам и спиртам;

-трудная окрашиваемость красителями (используют специальные методы окраски, чаще- по Цилю- Нильсену);

-устойчивость возбудителя к солнечной радиации и дезосредствам;

- патогенность.

Тейхоевые кислоты встречаются в клеточных стенках грамположительных бактерий. Представляют собой водорастворимые линейные полимеры, содержащие остатки глицерина или рибола, связанные фосфодиэфирными связыми. С тейхоевыми кислотами связаны главные поверхностные антигены ряда грамположительных бактерий.

Углеводы встречаются чаще в виде полисахаридов, кторые могут быть экзо- и эндоклеточными. Среди экзоклеточных полисахаридов выделяют каркасные (входят в состав капсул) и истинно экзополисахариды (выходят во внешнюю среду). Среди бактериальных полисахаридов многие находят медицинское применение. Декстраны - полисахариды с большой молекулярной массой, по виду напоминают слизь. 6% раствор- кровезаменитель полиглюкин. Декстрановый гель сефадекс используется в колоночной хроматографии как молекулярное сито. Эндоклеточные полисахариды - запасные питательные вещества клетки (крахмал, гликоген и др.).

Липополисахарид (ЛПС) - один из основных компонентов клеточной стенки грамотрицательных бактерий, это соединение липида с полисахаридом. ЛПС состоит из комплекса: 1.Липид А.

2. Одинаковое для всех грамотрицательных бактерий полисахаридное ядро.

3. Терминальная сахаридная цепочка (О - специфическая боковая цепь).

Синонимы ЛПС - эндотоксин, О - антиген.

ЛПС выполняет две основные функции - определяет антигенную специфичность и является одним из основных факторов патогенности. Это - эндотоксин, токсические свойства которого проявляются преимущественно при разрушении бактериальных клеток. Его токсичность определяется липидом А. ЛПС запускает синтез более 20 биологически активных веществ, определяющих патогенез эндотоксикоза, обладает пирогенным действием.

Нуклеиновые кислоты - ДНК и РНК. Рибонуклеиновые кислоты (РНК) находятся главным образом в рибосомах (р-РНК- 80- 85%), т(транспортные)- РНК- 10%, м(матричные)- РНК- 1- 2%, главным образом в одноцепочечной форме. ДНК (дезоксирибонуклеиновая кислота) может находиться в ядерном аппарате (хромосомная ДНК) или в цитоплазме в специализированных образованиях – плазмидах - плазмидная (внехромосомная) ДНК. Микроорганизмы отличаются по структуре нуклеиновых кислот, содержанию азотистых оснований. Генетический код состоит всего из четырех букв (оснований) - А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). Наиболее часто для характеристики микроорганизмов используют как таксономический признак процентное соотношение Г/Ц, которое существенно отличается у различных групп микроорганизмов.

Микроорганизмы синтезируют различные ферменты - специфические белковые катализаторы. У бактерий обнаружены ферменты 6 основных классов.

1. Оксидоредуктазы - катализируют окислительно- восстановительные реакции.

2. Трансферазы - осуществляют реакции переноса групп атомов.

3. Гидролазы - осущесвляют гидролитическое расщепление различных соединений.

4. Лиазы - катализируют реакции отщепления от субстрата химической группы негидролитическим путем с образованием двойной связи или присоединения химической группы к двойным связям.

5. Лигазы или синтетазы - обеспечивают соединение двух молекул, сопряженное с расщеплением пирофосфатной связи в молекуле АТФ или аналогичного трифосфата.

6. Изомеразы - определяют пространственное расположение групп элементов.

В соответствии с механизмами генетического контроля у бактерий выделяют три группы ферментов:

- конститутивные, синтез которых происходит постоянно;

- индуцибельные, синтез которых индуцируется наличием субстрата;

- репрессибельные, синтез которых подавляется избытком продукта реакции.

Ферменты бактерий делят на экзо- и эндоферменты. Экзоферменты выделяются во внешнюю среду, осуществляют процессы расщепления высокомолекулярных органических соединений. Способность к образованию экзоферментов во многом определяет инвазивность бактерий- способность проникать через слизистые, соединительнотканные и другие тканевые барьеры.

Примеры: гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, что повышает проницаемость тканей (клостридии, стрептококки, стафилококки и многие другие микроорганизмы); нейраминидаза облегчает преодоление слоя слизи, проникновение внутрь клеток и распространение в межклеточном пространстве (холерный вибрион, дифтерийная палочка, вирус гриппа и многие другие). К этой же группе относятся энзимы, разлагающие антибиотики.

В бактериологии для дифференциации микроорганизмов по биохимическим свойствам основное значение часто имеют конечные продукты и результаты действия ферментов. В соответствии с этим существует микробиологическая (рабочая) классификация ферментов.

1.Сахаролитические.

2.Протеолитические.

3.Аутолитические.

4.Окислительно - восстановительные.

5.Ферменты патогенности (вирулентности).

Ферментный состав клетки определяется геномом и является достаточно постоянным признаком. Знание биохимических свойств микроорганизмов позволяет идентифицировать их по набору ферментов. Основные продукты ферментирования углеводов и белков- кислота, газ, индол, сероводород, хотя реальный спектр для различных микроорганизмов намного более обширный.

Основные ферменты вирулентности - гиалуронидаза, плазмокоагулаза, лецитиназа, нейраминидаза, ДНК-аза. Определение ферментов патогенности имеет значение при идентификации ряда микроорганизмов и выявления их роли в патологии.

Ряд ферментов микроорганизмов широко используется в медицине и биологии для получения различных веществ (аутолитические, протеолитические), в генной инженерии (рестриктазы, лигазы).

2. Физиология и принципы культивирования микроорганизмов

2.1 Метаболизм микроорганизмов

Для роста и размножения микроорганизмы нуждаются в веществах, используемых для построения структурных компонентов клетки и получения энергии. Метаболизм (т.е. обмен веществ и энергии) имеет две составляющих - анаболизм и катаболизм. Анаболизм - синтез компонентов клетки (конструктивный обмен). Катаболизм - энергетический обмен, связан с окислительно- восстановительными реакциями, расщеплением глюкозы и других органических соединений, синтезом АТФ. Питательные вещества могут поступать в клетку в растворимом виде (это характерно для прокариот)- осмотрофы, или в виде отдельных частиц - фаготрофы.

Основным регулятором поступления веществ в бактериальную клетку является цитоплазматическая мембрана. Существует четыре основных механизма поступления веществ: - пассивная диффузия - по градиенту концентрации, энергонезатратная, не имеющая субстратной специфичности;

- облегченная диффузия - по градиенту концентрации, субстратспецифичная, энергонезатратная, осуществляется при участии специализированных белков пермеаз;

- активный транспорт- против градиента концентрации, субстратспецифичен (специальные связывающие белки в комплексе с пермеазами), энергозатратный (за счет АТФ), вещества поступают в клетку в химически неизмененном виде;

- транслокация (перенос групп)- против градиента концентрации, с помощью фосфотрансферазной системы, энергозатратна, вещества (преимущественно сахара) поступают в клетку в форфорилированном виде.

Основные химические элементы - органогены, необходимые для синтеза органичеких соединений- углерод, азот, водород, кислород.

В зависимости от источника потребляемого углерода микробы подразделяют на аутотрофы (используют CO2) и гетеротрофы (используют готовые органические соединения). В зависимости от источника энергии микроорганизмы делят на фототрофы (энергию получают за счет фотосинтеза - например, цианобактерии) и хемотрофы (энергия добывается за счет химических, окислительно- восстановительных реакций). Если при этом донорами электронов являются неорганические соединения, то это литотрофы, если органические- органотрофы. Если бактериальная клетка в состоянии синтезировать все необходимые для жизнедеятельности вещества, то это прототрофы. Если бактерии нуждаются в дополнительных веществах (факторах роста), то это ауксотрофы. Основными факторами роста для труднокультивируемых бактерий являются пуриновые и пиримидиновые основания, витамины, некоторые (обычно незаменимые) аминокислоты, кровяные факторы (гемин) и др.

2.2 Дыхание микроорганизмов

Путем дыхания микроорганизмы добывают энергию. Дыхание - биологический процесс переноса электронов через дыхательную цепь от доноров к акцепторам с образованием АТФ. В зависимости от того, что является конечным акцептором электронов, выделяют аэробное и анаэробное дыхание. При аэробном дыхании конечным акцептором электронов является молекулярный кислород (О>2>), при анаэробном- связанный кислород ( -NO>3> , =SO>4>, =SO>3>).

Примеры.

О>2>

Аэробное дыхание донор водорода H>2>O

Анаэробное дыхание

нитратное окисление NO>3>

(факультативные анаэробы) донор водорода N>2>

сульфатное окисление SO>4>

(облигатные анаэробы) донор водорода H>2>S

По типу дыхания выделяют четыре группы микроорганизмов.

1.Облигатные (строгие) аэробы. Им необходим молекулярный (атмосферный) кислород для дыхания.

2.Микроаэрофилы нуждаются в уменьшенной концентрации (низком парциальном давлении) свободного кислорода. Для создания этих условий в газовую смесь для культивирования обычно добавляют CO>2>, например до 10- процентной концентрации.

3.Факультативные анаэробы могут потреблять глюкозу и размножаться в аэробных и анаэробных условиях. Среди них имеются микроорганизмы, толерантные к относительно высоким (близких к атмосферным) концентрациям молекулярного кислорода - т.е. аэротолерантные, а также микроорганизмы которые способны в определенных условиях переключаться с анаэробного на аэробное дыхание.

4.Строгие анаэробы размножаются только в анаэробных условиях т.е. при очень низких концентрациях молекулярного кислорода, который в больших концентрациях для них губителен. Биохимически анаэробное дыхание протекает по типу бродильных процессов, молекулярный кислород при этом не используется.

Аэробное дыхание энергетически более эффективно (синтезируется большее количество АТФ).

В процессе аэробного дыхания образуются токсические продукты окисления (H>2>O>2>- перекись водорода, -О>2> - свободные кислородные радикалы), от которых защищают специфические ферменты, прежде всего каталаза, пероксидаза, пероксиддисмутаза. У анаэробов эти ферменты отсутствуют, также как и система регуляции окислительно- восстановительного потенциала (rH>2>).

Основные методы создания анаэробных условий для культивирования микроорганизмов.

1. Физический- откачивание воздуха, введение специальной газовой безкислородной смеси (чаще- N>2>- 85%, CO>2>- 10%, H>2>- 5%).

2. Химический - применяют химические поглотители кислорода.

3. Биологический - совместное культивирование строгих аэробов и анаэробов (аэробы поглощают кислород и создают условия для размножения анаэробов).

4. Смешанный - используют несколько разных подходов.

Необходимо отметить, что создание оптимальных условий для строгих анаэробов - очень сложная задача. Очень непросто обеспечить постоянное поддержание безкислородных условий культивирования, необходимы специальные среды без содержания растворенного кислорода, поддержание необходимого окислительно-восстановительного потенциала питательных сред, взятие и доставка, посев материала в анаэробных условиях.

Существует ряд приемов, обеспечивающих более подходящие условия для анаэробов- предварительное кипячение питательных сред, посев в глубокий столбик агара, заливка сред вазелиновым маслом для сокращения доступа кислорода, использование герметически закрывающихся флаконов и пробирок, шприцев и лабораторной посуды с инертным газом, использование плотно закрывающихся эксикаторов с горящей свечой. Используются специальные приборы для создания анаэробных условий - анаэростаты. Однако в настоящее время наиболее простым и эффективным оборудованием для создания анаэробных и микроаэрофильных условий является система “Газпак” со специальными газорегенерирующими пакетами, действующими по принципу вытеснения атмосферного воздуха газовыми смесями в герметически закрытых емкостях.

Основные принципы культивирования микроорганизмов на питательных средах.

1.Использование всех необходимых для соответствующих микробов питательных компонентов.

2.Оптимальные температура, рН, rH>2>, концентрация ионов, степень насыщения кислородом, газовый состав и давление.

Микроорганизмы культивируют на питательных средах при оптимальной температуре в термостатах, обеспечивающих условия инкубации.

По температурному оптимуму роста выделяют три основные группы микроорганизмов.

1.Психрофилы- растут при температурах ниже +20 градусов Цельсия.

2.Мезофилы- растут в диапозоне температур от 20 до 45 градусов (часто оптимум- при 37 градусах С).

3.Термофилы- растут при температурах выше плюс 45 градусов.

2.3 Краткая характеристика питательных сред

По консистенции выделяют жидкие, плотные (1,5-3% агара) и полужидкие (0,3- 0,7 % агара) среды.

Агар - полисахарид сложного состава из морских водорослей, основной отвердитель для плотных (твердых) сред. В качестве универсального источника углерода и азота применяют пептоны- продукты ферментации белков пепсином, различные гидролизаты- мясной, рыбный, казеиновый, дрожжевой и др.

По назначению среды разделяют на ряд групп:

- универсальные (простые), пригодные для различных нетребовательных микроорганизмов (мясо - пептонный бульон - МПБ, мясо - пептонный агар- МПА);

- специальные - среды для микроорганизмов, не растущих на универсальных средах (среда Мак- Коя на туляремию, среда Левенштейна- Иенсена для возбудителя туберкулеза);

- дифференциально - диагностические - для дифференциации микроорганизмов по ферментативной активности и культуральным свойствам ( среды Эндо, Плоскирева, Левина, Гисса);

- селективные (элективные) - для выделения определенных видов микроорганизмов и подавления роста сопутствующих - пептонная вода, селенитовая среда, среда Мюллера.

По происхождению среды делят на естественные, полусинтетические и синтетические.

2.4 Рост и размножение микроорганизмов

Бактериальные клетки размножаются в результате деления. Основные стадии размножения микробов в жидкой среде в стационарных условиях:

- лаг- фаза (начальная стадия адаптации с медленным темпом прирости биомассы бактерий);

- экспоненциальная (геометрического роста) фаза с резким ростом численности популяции микроорганизмов (2 в степеии n);

- стационарная фаза (фаза равновесия размножения и гибели микробных клеток);

- стадия гибели - уменьшение численности популяции в связи с уменьшением и отсутствием условий для размножения микроорганизмов (дефицит питательных веществ, изменение рH, rH>2>, концентрации ионов и других условий культивирования).

Данная динамика характерна для периодических культур с постепенным истощением запаса питательных веществ и накоплением метаболитов.

Если в питательной среде создают условия для поддержания микробной популяции в экспоненциальной фазе - это хемостатные (непрерывные) культуры.

Характер роста бактерий на плотных и жидких питательных средах: сплошной рост, образование колоний, осадок, пленка, помутнение.

Чистая культура- популяция одного вида микроорганизмов.

Основные принципы получения чистых культур: механическое разобщение, рассев, серийные разведения, использование элективных сред, особых условий культивирования (с учетом устойчивости некоторых микробов к определенным температурам, кислотам, щелочам, парциальному давлению кислорода, рН и мн.др).

Литература:

  1. Бухарин О.В. «Персистенция патогенных бактерий», 1999.

    Галактионов В.Г. «Иммунология», 1998.

    Гущин И.С. «Аллергическое воспаление и его фармакологический контроль», 1998.

    Змушко К.И. «Клиническая иммунология», 2001.

    Медуницин Н.В. «Вакцинология», 1999.