2. Таблица истинности логической функции

Логическая функция F задаётся выражением x /\ ¬y /\ (¬z \/ w).

На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут

соответствующие им столбцы (сначала – буква, соответствующая первому

столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы

в ответе пишите подряд, никаких разделителей между буквами ставить

не нужно.

Демонстрационный вариант Единый государственный экзамен ЕГЭ 2017 г.  – задание№2

Решение:

Конъюнкция (логическое умножение) истинна тогда и только тогда, когда истинны все высказывания. Следовательно переменной х должен соответствовать тот столбец, в котором все значения равны 1.

Переменной ¬y должен соответствовать тот столбец, в котором все значения равны 0.

Дизъюнкция (логическое сложение) двух высказываний истинна тогда и только тогда, когда истинно хотя бы одно высказывание.
Дизъюнкция ¬z \/ y в данной строке будет истинна только если z=0, w=1.

Таким образом, переменной ¬z соответствует столбец с переменной 1 (1 столбец), переменной w соответствует столбец с переменной 4 (4 столбец).

Ответ: zyxw


Демонстрационный вариант Единый государственный экзамен ЕГЭ 2016 г.  – задание№2 

Логическая функция F задаётся выражением (¬z)/\x \/ x/\y. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая 1-му столбцу; затем – буква, соответствующая 2-му столбцу; затем – буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и таблица истинности:

Тогда 1-му столбцу соответствует переменная y, а 2-му столбцу
соответствует переменная x. В ответе нужно написать: yx.

Ответ:

Решение:

1. Запишем заданное выражение в более простых обозначениях:

¬z*x + x*y = x*(¬z + y)

2. Конъюнкция (логическое умножение) истинна тогда и только тогда, когда истинны все высказывания. Следовательно, чтобы функция (F) была равна единице (1), нужно, чтобы каждый множитель был равен единице (1). Таким образом, при F = 1,  переменной х должен соответствовать тот столбец, в котором все значения равны 1.

3. Рассмотрим (¬z + y), при F = 1 данное выражение также равно 1(см. пункт 2).

4. Дизъюнкция (логическое сложение) двух высказываний истинна тогда и только тогда, когда истинно хотя бы одно высказывание.
Дизъюнкция ¬z \/ y в данной строке будет истинна только если

  1. z = 0; y = 0 или y = 1;
  2. z = 1; y = 1

5. Таким образом, переменной ¬z соответствует столбец с переменной 1 (1 столбец), переменной y соответствует столбец с переменной 2 (2 столбец).

Ответ: zyx


КИМ Единый государственный экзамен ЕГЭ 2016 (досрочный период) – задание№2 

Логическая функция F задаётся выражением

(x /\ y /\¬z) \/ (x /\ y /\ z) \/ (x /\¬y /\¬z).

На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Решение:

Запишем заданное выражение в более простых обозначениях:

(x*y*¬z) + (x*y*z) + (x*¬y*¬z)=1

Это выражение истинно тогда, когда хотя бы один из (x*y*¬z) , (x*y*z) , (x*¬y*¬z) равняется 1. Конъюнкция (логическое умножение) истинна тогда и только тогда, когда истинны все высказывания.

Хотя бы одна из этих дизъюнкции x*y*¬z; x*y*z; x*¬y*¬z будет истинна только если х=1.

Таким образом, переменной х соответствует столбец с переменной 2 (2 столбец).

Пусть y- перем.1, z- прем.3. Тогда, в первом случае x*¬y*¬z будет истинна, во втором случае x*y*¬z , а в третьем x*y*z.

Ответ: yxz


Символом F обозначено одно из указанных ниже логических выражений от трех аргументов: X, Y, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу справа). Какое выражение соответствует F?

X Y Z F
0 0 0 0
1 0 1 1
0 1 0 1

1) X ∧ Y ∧ Z      2) ¬X ∨ Y ∨¬Z      3) X ∧ Y ∨ Z      4) X ∨ Y ∧ ¬Z

Решение:

1) X ∧ Y ∧ Z  = 1.0.1 = 0 (не соответствует на 2-й строке)

2) ¬X ∨ Y ∨¬Z = ¬0 ∨ 0 ∨ ¬0 = 1+0+1 = 1 (не соответствует на 1-й строке)

3) X ∧ Y ∨ Z = 0.1+0 = 0 (не соответствует на 3-й строке)

4) X ∨ Y ∧ ¬Z (соответствует F)

X ∨ Y ∧ ¬Z = 0 ∨ 0 ∧ ¬0 = 0+0.1 = 0

X ∨ Y ∧ ¬Z = 1 ∨ 0 ∧ ¬1 = 1+0.0 = 1

X ∨ Y ∧ ¬Z = 0 ∨ 1 ∧ ¬0 = 0+1.1 = 1

Ответ: 4


Дан фрагмент таблицы истинности выражения F. Какое выражение соответствует F?

A B C F
0 1 1 1
1 0 0 0
1 0 1 1

1) (A → ¬B) ∨ C      2) (¬A ∨ B) ∧ C      3) (A ∧ B) → C      4) (A ∨ B) → C

Решение:

1) (A → ¬B) ∨ C = (1 → ¬0) ∨ 0 = (1 → 1) + 0 = 1 + 0 = 1 (не соответствует на 2-й строке)

2) (¬A ∨ B) ∧ C = (¬1 ∨ 0) ∧ 1 = (0+0).1 = 0 (не соответствует на 3-й строке)

3) (A ∧ B) → C = (1 ∧ 0) → 0 = 0 → 0 = 1 (не соответствует на 2-й строке)

4) (A ∨ B) → C (соответствует F)

(A ∨ B) → C = (0 ∨ 1) → 1 = 1

(A ∨ B) → C = (1 ∨ 0) → 0 = 0

(A ∨ B) → C = (1 ∨ 0) → 1 = 1

Ответ: 4


Дано логическое выражение, зависящее от 6 логических переменных:

X1 ∨ ¬X2 ∨ X3 ∨ ¬X4 ∨ X5 ∨ X6

Сколько существует различных наборов значений переменных, при которых выражение истинно?

1)  1                        2) 2                           3) 63                         4) 64

Решение:

Ложное выражение только в 1 случае: X1=0, X2=1, X3=0, X4=1, X5=0, X6=0

X1 ∨ ¬X2 ∨ X3 ∨ ¬X4 ∨ X5 ∨ X6 = 0 ∨ ¬1 ∨ 0 ∨ ¬1 ∨ 0 ∨ 0 = 0

Всего вариантов 26=64, значит истинных

64-1 = 63

Ответ: 63


Дан фрагмент таблицы истинности выражения F.

x1 x2 x3 x4 x5 x6 x7 F
0 1 0 1 1 1 0 0
1 1 0 1 0 1 0 1
0 1 0 1 1 0 1 0

Какое выражение соответствует F?

 

1) x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5 ∨ x6 ∨ ¬x7
2) x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ x7
3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7
4) x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7

Решение:

1) x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 = 0 + 1 + … = 1 (не соответствует на 1-й строке)

2) x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ x7 = 0 + 0 + 0 + 0 + 0 + 1 + 0 = 1 (не соответствует на 1-й строке)

3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7 = 1.0. …= 0 (не соответствует на 2-й строке)

4) x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 (соответствует F)

x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 = 0. … = 0

x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 = 1.1.1.1.1.1.1 = 1

x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ ¬x5 ∧ x6 ∧ ¬x7 = 0. … = 0

Ответ: 4


Дан фрагмент таблицы истинности для выражения F:

x1 x2 x3 x4 x5 x6 x7 x8 F
    0       1   1
1   0     1     0
      1       0 1

Каким выражением может быть F?

1) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ ¬x8
2) ¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ x8
3) ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8
4) ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ ¬x8

Решение:

1) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7 ∧ ¬x8 = x1 . ¬x2 . 0 . … = 0 (не соответствует на 1-й строке)

2) ¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ x8 (соответствует F)

 

3) ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8 = … ¬x7 ∧ ¬x8 = … ¬1 ∧ ¬x8 = … 0 ∧ ¬x8 = 0 (не соответствует на 1-й строке)

4) ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ ¬x8 = ¬x1 ∨ ¬x2 ∨ ¬x3 … = ¬1 ∨ ¬x2 ∨ ¬0 .. = 1 (не соответствует на 2-й строке)

Ответ: 2


Дан фрагмент таблицы истинности для выражения F:

x1 x2 x3 x4 x5 x6 x7 F
0 0 1 1 0 0 1 0
0 1 0 0 1 1 0 1
0 0 0 0 1 1 1 1
1 0 1 0 1 1 0 1
0 1 1 1 0 1 0 1

Укажите минимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x5 совпадает с F.

Решение:

Минимально возможное число различных строк, в которых значение x5 совпадает с F = 4

Ответ: 4


Дан фрагмент таблицы истинности для выражения F:

x1 x2 x3 x4 x5 x6 x7 x8 F
0 0 1 1 0 0 1 0 0
0 1 0 0 1 1 0 1 1
0 0 0 0 1 1 1 1 1
1 0 1 0 1 1 0 1 1
0 1 1 1 0 1 0 0 1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x6 не совпадает с F.

Решение:

Максимально возможное число = 28 = 256

Максимально возможное число различных строк, в которых значение x6 не совпадает с F = 256 – 5 = 251

Ответ: 251


Дан фрагмент таблицы истинности для выражения F:

x1 x2 x3 x4 x5 x6 x7 F
0 0 1 1 0 0 1 0
0 1 0 0 1 1 0 1
0 0 0 0 1 1 1 1
1 0 1 0 1 1 0 1
0 1 1 1 0 1 0 1

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение ¬x5 ∨ x1 совпадает с F.

Решение:

¬x5 ∨ x1

1+0=1 – не совпадает с F

0+0=0 – не совпадает с F

0+0=0 – не совпадает с F

0+1=1 – совпадает с F

1+0=1 – совпадает с F

27 = 128 – 3 = 125

Ответ: 125


Каждое логическое выражение A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково минимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?

Решение:

4&4 = 4

Ответ: 4


Каждое логическое выражение A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы. Каково максимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?

Решение:

4+4 = 8

Ответ: 8


Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 5 единиц. Каково минимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?

Решение:

28 = 256 – 5 = 251

Ответ: 251


Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?

Решение:

28 = 256

Ответ: 256


Каждое из логических выражений A и B зависит от одного и того же набора из 5 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Сколько единиц будет содержаться в столбце значений таблицы истинности выражения A ∧ B?

Решение:

В таблицах истинности обоих выражений нет ни одной совпадающей строки.

1.0 = 0

0.1 = 0

Ответ: 0


Каждое из логических выражений A и B зависит от одного и того же набора из 6 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Сколько единиц будет содержаться в столбце значений таблицы истинности выражения A ∨ B?

Решение:

26 = 64

Ответ: 64


Каждое из логических выражений A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности обоих выражений нет ни одной совпадающей строки. Каково максимально возможное число нулей в столбце значений таблицы истинности выражения ¬A ∨ B?

Решение:

¬A ∨ B

A=1,B=0 => ¬0 ∨ 0 = 0 + 0 = 0

27 = 128

Ответ: 128


Каждое из логических выражений F и G содержит 7 переменных. В таблицах истинности выражений F и G есть ровно 8 одинаковых строк, причем ровно в 5 из них в столбце значений стоит 1. Сколько строк таблицы истинности для выражения F ∨ G содержит 1 в столбце значений?

Решение:

Есть ровно 8 одинаковых строк, причем ровно в 5 из них в столбце значений стоит 1.

Это означает, что ровно в 3 из них в столбце значений стоит 0.

27 = 128

128 – 3 = 125

Ответ: 125


Логическая функция F задаётся выражением (a ∧ ¬c) ∨ (¬b ∧ ¬c). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c.

? ? ? F
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

Решение:

(a . ¬c) + (¬b . ¬c)

Когда с равно 1, F равна нулю так что последний столбец c.

Xтобы определить первый и второй столбцы, мы можем использовать значения из 3-го ряда.

0, 1,C=0, F=0

(a . 1) + (¬b . 1) = 0

a=0, b=1.

Ответ: abc


Логическая функция F задаётся выражением (a ∧ c)∨ (¬a ∧ (b ∨ ¬c)). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c.

? ? ? F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

Решение:

(a ∧ c) ∨ (¬a ∧ (b ∨ ¬c))

(a ∧ c) ∨ ¬a ∧ b ∨ ¬a ∧ ¬c

a.c + ¬a.¬c + ¬a. b

a.c + ¬a.¬c

a c F
0 0 1
0 1 0 ¬a. b b
1 0 0 ¬a. b 0
1 1 1

Исходя из того, что при a=0 и c=0, то F=0, и данных из второй строки, мы можем сделать вывод, что в третьем стоблце располагается b.

Ответ: cab


Логическая функция F задаётся выражением x ∧ (¬y ∧ z ∧ ¬w ∨ y ∧ ¬z). На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

? ? ? ? F
0 1 0 1 1
0 1 1 0 1
1 1 0 1 1

В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

Решение:

x ∧ (¬y ∧ z ∧ ¬w ∨ y ∧ ¬z)

x . (¬y . z . ¬w . y . ¬z)

Исходя из того, что при x=0, то F=0, мы можем сделать вывод, что во втором столбце располагается x.

Ответ: wxzy