Техника интегрирования и приложения определенного интеграла

Контрольная работа

по теме «Техника интегрирования и приложения определенного интеграла»

314

Найти неопределенные интегралы:

335

Найти определенный интеграл:

356

Найти:

  1. точное значение интеграла по формуле Ньютона-Лейбница;

  2. приближенное значение интеграла по формуле трапеций, разбивая отрезок интегрирования на 8 равных частей и производя вычисления с округлением до 4 десятичных знаков;

  3. относительную погрешность.

Решение:

1.

2.

, где

3,8030

377



Пределы интегрирования по x от 0 до 4:

Пределы интегрирования по y от 0 до 8:

Координаты центра тяжести данной фигуры (2,4; 4,6).



398

Вычислить несобственный интеграл или установить его расходимость:

Несобственный интеграл вычислен и равен 1, следовательно он сходится.

451

  1. построить на плоскости хОу область интегрирования;

  2. изменить порядок интегрирования и вычислить площадь области при заданном и измененном порядках интегрирования;



Решение:

  1. Пределы внешнего интеграла по переменной х – числа 1 и 5 указывают на то, что область D ограничена слева прямой х = 1 и справа х = 5.

Пределы внутреннего интеграла по переменной у – указывают на то, что область D ограничена снизу параболой и сверху линией .

  1. Чтобы изменить порядок интегрирования, установим пределы интегрирования для внешнего интеграла по переменной у. Как видно из рисунка, наименьшее значение которое принимает у в точке А(1;0) равно 0, а наибольшее значение в точке В(5; 4) равно 4. Т.О. новые пределы интегрирования: 0 – нижний, 4 – верхний.

Определим пределы для внутреннего интеграла по переменной х. Выразим х из уравнений: