Численные методы для решения нелинейных уравнений
Министерство общего и профессионального образования Российской Федерации
Саратовский государственный технический университет
ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ
Методические указания
к самостоятельной работе по курсу «Высшая математика»
для студентов всех специальностей
под контролем преподавателя
Одобрено
редакционно-издательским советом
Саратовского государственного
технического университета
Саратов 2008
Введение
Данная работа ориентирована на изучение некоторых численных методов приближенного решения систем нелинейных уравнений с любым числом уравнений, составление на базе этих методов вычислительных схем алгоритмов и программ на алгоритмическом языке ФОРТРАН – IV.
Методические указания могут быть использованы как в процессе выполнения курсовой работы, так и для решения практических задач.
Задача настоящих указаний состоит в том, чтобы научить студентов решать системы нелинейных уравнений с помощью ЭВМ и затем полученные навыки использовать в курсовом и дипломном проектировании.
Предполагается, что студенты прослушали лекционный курс по основам алгоритмического языка ФОРТРАН – IV.
В качестве справочного пособия по языкам программирования может быть использована литература. [5]
Численные методы для решения нелинейных уравнений
Цель работы: изучение численных методов приближенного решения нелинейных систем уравнений, составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке ФОРТРАН – IV, приобретение практических навыков отладки и решения задач с помощью ЭВМ.
1. Определения и условные обозначения
– конечномерное линейное пространство, элементами (точками, векторами) являются группы из упорядоченных действительных чисел, например:
где – действительные числа, .
В введена операция сложения элементов, т. е. определено отображение ,
где
Оно обладает следующими свойствами:
,
,
, что (элемент называется нулевым),
, что (элемент называется противоположным элементу ).
В введена операция умножения элементов на действительные числа, т.е. определено отображение ,
где
Оно обладает следующими свойствами:
,
Операции сложения элементов и умножения их на числа удовлетворяют законам дистрибутивности:
,
.
Каждой паре элементов поставлено в соответствие действительное число, обозначаемое символом и называемое скалярным произведением, где
и выполнены следующие условия:
,
,
,
, причем – нулевой элемент.
Матрица вида
, (1)
где – действительные числа (,) определяет линейный оператор, отображающий линейное пространство в себя, а именно, для
,
где .
Над линейными операторами, действующими в линейном пространстве , вводятся следующие операции:
сложение операторов , при этом, если , то ,
умножение операторов на числа: при этом, если , то ,
умножение операторов: , при этом, если , то .
Обратным к оператору называется оператор такой, что , где – единичный оператор, реализующий тождественное отображение, а именно,
.
Пусть число и элемент , таковы, что .
Тогда число называется собственным числом линейного оператора , а элемент – собственным вектором этого оператора, соответствующим собственному числу .
Линейный оператор называется сопряженным к оператору , если для любых элементов выполняется равенство .
Для всякого оператора сопряженный оператор существует, единствен; если , то .
Справедливы равенства:
,
,
,
, если существует.
Каждому элементу ставится в соответствие действительное положительное число, обозначаемое символом и называемое нормой элемента .
Введем в рассмотрение три нормы для :
,
,
.
При этом выполняются следующие неравенства:
.
Норма элемента удовлетворяет следующим условиям (аксиомам нормы):
, причем , лишь если ,
,
.
Говорят, что последовательность элементов сходится к элементу ,
а именно, ,
или ,
если .
Определенная таким образом сходимость в конечномерном линейном пространстве называется сходимостью по норме.
Множество элементов , удовлетворяющих неравенству называется замкнутым (открытым) шаром в пространстве с центром в точке и обозначается .
Каждому линейному оператору, определяемому квадратной матрицей (1), ставится в соответствие действительное неотрицательное число, обозначаемое символом и называемое нормой линейного оператора .
Норма линейного оператора удовлетворяет следующим условиям аксиомам норм:
, причем , лишь если – нулевая матрица,
,
.
Введем в рассмотрение три нормы для А отображающего в :
,
,
,
где i-ое собственное значение матрицы .
Эти нормы линейного оператора А согласованы с соответствующими нормами элемента (вектора) в смысле условия .
2. Основные сведения о системах нелинейных уравнений в
Общая форма систем нелинейных уравнений в имеет вид:
(2)
или F(x) = 0,
где – заданные функции n переменных, – неизвестные.
Функция при действительных значениях аргументов принимают действительные значения, т.е. являются действительнозначными. Вычислять будем только действительные решения.
Решением системы нелинейных уравнений (2) называется совокупность (группа) чисел , которые, будучи подставлены на место неизвестных , обращают каждое уравнение системы в тождество.
Частным случаем системы (2) является система линейных уравнений:
или ,
где А – матрица вида (1), порождающая линейный оператор, отображающий в
Система линейных уравнений (2) поставим в соответствие линеаризованное уравнение (первые два члена из разложения в ряд Тейлора (2)) в точке вида
(2)
или ,
где – квадратная матрица Якоби, составленная из частных производных первого порядка функций, а именно , вычисленных точке .
Для дальнейшего нам потребуется еще одна форма записи системы нелинейных уравнений в , а именно:
(3)
или ,
где .
Операции, с помощью которых осуществляется преобразование системы (2) к системе (3), могут быть любыми, необходимо только, чтобы искомое решение системы (3) удовлетворяло системе (2).
Функции удовлетворяют тем же условиям, что и функции .
3. Отделение решений
Задача отделения решений систем нелинейных уравнений состоит в определении достаточно малой окрестности (шара малого радиуса, центром которого является решение) около какого-нибудь одного решения и в выборе в этой окрестности начального приближения к решению. Начальное приближение должно попасть при этом в область сходимости метода.
Задача отделения решений не имеет достаточно эффективных методов общего характера. При решении уравнения предполагается знание начальных приближений к изолированному решению из постановки конкретной задачи. Если же таких данных нет, то можно дать лишь некоторые рекомендации для конкретных видов уравнений.
Так, если дано скалярное уравнение , то его решение с геометрической точки зрения можно рассматривать как абсциссы точек пересечения графика функции с осью абсцисс. Построив график функции y=f (x), приближенно определяем окрестности изолированных точек пересечения графика с горизонтальной осью. Сами точки пересечения берем за начальные приближения к точным решениям.
Безусловно, графические построения имеют большие погрешности, и выбранные начальные приближения могут не попасть в область сходимости применяемого метода.
Тогда нужно провести пробные решения на ЭВМ выбранным методом с исследованием сходимости.
Если приближения сходятся, то начальные приближения выбраны в области сходимости метода и можно получить приближенное решение с заданной точностью.
Если приближения расходятся, следует провести более точные графические построения и выбрать начальное приближение в области сходимости.
Аналогично отделяются решения для системы двух нелинейных уравнений
, .
В этом случае на плоскости x,y строятся линии уровня функции двух переменных и . Координаты точек пересечения графиков этих функций дают начальные приближения изолированных решений.
4. Методы решения нелинейных уравнений
4.1 Метод простой итерации
Метод простой итерации (см. [1]) применяется для решения систем нелинейных уравнений с любым числом уравнений. Его можно применять как для уточнения найденного решения, так и для первоначального нахождения решения. В последнем случае, однако, метод может не дать результата.
Для применения метода простой итерации система уравнений (2) приводится к виду (3).
Затем, взяв начальное приближение , которое предполагается либо известным, либо произвольным, строим последовательность
(4)
по следующим формулам
(5)
Замечание. Для приведения системы уравнений (2) к виду (3) можно использовать прием:
где – релаксационный параметр, определяется методом Зейделя.
4.2 Метод Зейделя
Метод Зейделя отличается от метода простой итерации тем, что вычисления ведутся по формулам:
(6)
Иными словами, при вычислении используются не , как в методе простой итерации, а .
4.3 Метод Ньютона
Этот метод (см.[1], [4]) предложен И.Ньютоном в 1669 году, однако наиболее полное обоснование было сделано советским математиком Л.В.Канторовичем в 1949 году (см.[4]), поэтому в литературе этот метод часто называют методом Ньютона-Канторовича.
Метод Ньютона является одним из итерационных методов, получаемых линеаризацией линейного оператора
,
где из уравнения (2).
Так, для к-го приближения к точному решению уравнения (2) ставится в соответствие линеаризованное уравнение вида (2), а именно:
или ,
где – квадратная матрица Якоби, составленная из частных производных первого порядка функций, т.е. , вычисленных в точке .
Таким образом, последовательность (4) строится по следующим правилам:
(),
где – обратный оператор к линейному оператору , определяемому квадратной матрицей
Трудности построения алгоритма метода Ньютона, связанные с обращением производной (построение ), обычно преодолеваются тем, что вместо методов обращения матрицы решают алгебраическую систему уравнений (7) относительно неизвестных . Алгоритмы решения системы линейных алгебраических уравнений хорошо отработаны, для них имеются стандартные программы для ЭВМ и, кроме того, в результате решения системы одновременно с обращением матрицы получается умножение обратной матрицы на вектор .
Итерационная формула метода Ньютона при таком подходе будет иметь вид:
(7)
. (8)
4.4 Модифицированный метод Ньютона
Эта разновидность метода Ньютона строится путем определения производной только в одной точке приближенного решения, т. е. Последовательные приближения (4) строятся по формулам:
, (9)
где – начальное приближение к точному решению .
4.5 Метод Зейделя на основе линеаризованного уравнения
Итерационная формула для построения приближенного решения нелинейного уравнения (2) на основе линеаризованного уравнения (7) имеет вид:
4.6 Метод наискорейшего спуска
Методы спуска (см. [2]) сводят решение системы (2) к задаче нахождения минимума специально построенного функционала (функционал – отображение в R), а именно:
,
где .
Функционал в конечном пространстве Rn можно рассматривать как функцию многих переменных .
Для нахождения точки , в которой функционал принимает минимальное нулевое значение, выбирают точку , находят и строят итерационную формулу: с начальным приближением .
В итерационной формуле параметр h>k> пока не определен, выберем его таким образом, чтобы выполнилось условие: , начиная с x0, в предположении, что – монотонный функционал.
Для выбора h>k> построим функционал, зависящий от параметра, который изменяется непрерывно: .
При h=0 имеем, что (0) – линия уровня функционала, проходящая через точку xk . Для нахождения следующей линии уровня, более близкой к минимуму, будем выбирать h таким образом, чтобы для данного xk
Это условие минимума по h будем рассматривать как уравнение для получения h>k>.
Решим его приближенно, т.к. ошибка в несколько процентов обычно не влияет на скорость сходимости. Отметим кстати, что число h>k>> >всегда> >должно быть положительным. Для этого разложим функцию в ряд Тейлора по h в точке h=0 и возьмем только линейную часть этого разложения
.
Подстановка линейной части в условие , дает уравнение для приближенного определения
.
Решая построенное уравнение относительно h, получим:
или .
Таким образом, итерационная формула метода наискорейшего спуска имеет вид:
или , где производные вычислены в точке .
Метод наискорейшего спуска требует большего количества вычислений, чем другие методы первого порядка. Однако он обладает по сравнению с другими методами важным преимуществом, заключающемся в неизбежной сходимости процесса. При этом нужно помнить, что метод наискорейшего спуска может привести не к решению системы уравнений (2), а к значениям аргумента, дающим относительный экстремум функции
, т.е. .
5. Сходимость методов решения нелинейных уравнений
Если метод сходится, то есть , где
– точное решение
– k-тое приближение к точному решению, то итерационный процесс следовало бы закончить по достижению заданной погрешности , где – заданная точность (погрешность).
Однако практически это условие выполнить нельзя, так как неизвестно, тогда для окончания итерационного процесса можно воспользоваться неравенствами , или , где и – заданные величины.
При таком окончании итераций погрешность может возрасти по сравнению с и, поэтому, чтобы не увеличивалась, величины и соответственно уменьшают или увеличивают число итераций.
Методы простой итерации, Зейделя, модифицированный метод Ньютона, метод наискорейшего спуска (см. [1], [2], [3], [4]) являются методами первого порядка – это значит, что имеет место неравенство , k=1, 2, . . . , где – константа, своя у каждого метода, зависящая от выбора начального приближения , функции f>i>> >, i = 1, 2, . . . , n, и их частных производных первого и второго порядков – точнее их оценок в некоторой окрестности искомого решения, которой принадлежит начальное приближение.
Метод Ньютона является методом второго порядка, то есть для него имеет место неравенство , k=1, 2, . . . , где – константа, зависящая от тех же величин, что и константа .
А теперь рассмотрим достаточные условия сходимости метода простой итерации и метода Ньютона.
Сходимость процесса простой итерации зависит от двух условий. Первое условие состоит в том, что какая-нибудь точка должна оказаться близкой к исходному решению . Степень необходимой близости зависит от функций >1>>, >>2>, . . . , >n> . Это требование не относится к системам линейных уравнений, для которых сходимость процесса простой итерации зависит только от второго условия.
Второе условие связано с матрицей, составленной из частных производных первого порядка функций >1>>, >>2>, . . . , >n>> >– матрицей Якоби
,
вычисленных в точке .
В случае, когда рассматривается система линейных алгебраических уравнений, матрица M состоит из постоянных чисел – коэффициентов, стоящих при неизвестных в правой части уравнения (3). В случае нелинейных уравнений элементы матрицы M зависят, вообще говоря, от . Для сходимости процесса простой итерации достаточно, чтобы выполнялось неравенство: для из некоторой окрестности точного решения , которой должно принадлежать начальное приближение .
Приведем также достаточные условия сходимости метода Ньютона для системы уравнений вида (2) по норме .
Предположим, что имеется начальное приближение к искомому решению системы (2) , функции непрерывны и имеют непрерывные частные производные до второго порядка в шаре , тогда, если выполнены условия:
Матрица Якоби системы (2) на начальном приближении имеет обратную и известна оценка нормы обратной матрицы ,
Для всех точек шара выполнено неравенство
при i, j = 1, 2, . . . , n ,
Выполнено неравенство
,
где L – постоянная 0 L 1,
Числа b, N, r подчинены условию nbNr < 0,4, тогда система уравнений (2) в шаре имеет единственное решение, к которому сходятся последовательные приближения (8) или (7’), (9’).
Для других методов условия сходимости имеют сложный вид, и мы отсылаем читателя к специальной литературе [1], [2], [3], [4].
6. Примерный перечень возможных исследований
Сравнение различных методов на экономичность при решении конкретной задачи:
по числу операций на одной итерации;
по числу итераций, необходимых для достижения заданной точности;
Зависимость числа итераций для достижения заданной точности:
от выбора вида нормы;
от выбора критерия окончания итерационного процесса по или по невязке ;
от выбора начального приближения;
от погрешности задания коэффициентов в уравнении.
7. Контрольные вопросы
Понятие о нелинейных системах уравнений в Rn.
Понятие приближенного и точного решения нелинейной системы уравнений.
Сущность графического метода отделения решения для системы двух нелинейных уравнений, каковы его преимущества и недостатки?
Сущность метода простой итерации и метода Зейделя. Каковы условия применимости метода простой итерации?
Сущность метода Ньютона и его модификации. Какова скорость сходимости метода Ньютона?
Сущность метода наискорейшего спуска. Как выбирается параметр спуска?
8. Порядок выполнения курсовой работы
Получить вариант задания, индивидуальный для каждого студента, у преподавателя, а именно:
Найти решение системы нелинейных уравнений в первой координатной четверти с номером – N>1> (см. варианты заданий п.10), применив для первого этапа уточнения метод с номером – N>2>, а для второго этапа уточнения метод с номером – N>3> , точность вычислений на первом этапе – EPS1[0.1 – 0.01], на втором этапе – EPS2 [0.1 - 0.0001], N>4> – номер нормы, I – номер параметра a, J – номер параметра b, начальное приближение выбрать произвольно или графически, (0,1).
Разработать обязательные для выполнения задания разделы данных методических указаний.