Линейные функции

КОНТРОЛЬНАЯ РАБОТА № 2

ВАРИАНТ 2.3

№ 1. Записать общее уравнение прямой, переходящей через точку М (-2, 4) перпендикулярно прямой x+2y+5=0. Найти площадь треугольника, образованного данной прямой с осями координат.

Запишем уравнение прямой в виде:

.

Коэффициент К найдем из условия перпендикулярности прямых:

Получим уравнение прямой:

Сделаем чертеж


Ответ:

№ 2. Записать общее уравнение прямой, проходящей точку М (-2, 2) и отсекающей от первого координатного угла треугольник площадью S= 4,5 кв.ед.

Сделаем схематический чертеж

Площадь треугольника будет равна .

Координаты точек А и В найдем из уравнения прямой, которое запишем в виде

Из уравнения

Получим прямую с угловым коэффициентом

Значение соответствует прямой, которая отсекает треугольник площадью S=4,5 от третьего координатного угла..

№ 3. Даны вершины треугольника А (2,1,0), В (3,-1,1) и С (1,2,-4). Записать общее уравнение плоскости, проходящей через сторону АВ перпендикулярно плоскости треугольника АВС.

Общее уравнение имеет вид:

Для нахождения A,B,C и D необходимо составить три уравнения.

Два уравнения получим из условия, что искомая плоскость проходит через точки А и В. Третье — из условия, что искомая плоскость перпендикулярна плоскости, проходящей через три точки А, В и С. условие перпендикулярности плоскостей:

Найдем уравнение плоскости, проходящей через точки А, В, С по формуле:

Разложим определитель по первой строке, подготовив числовые значения:

Получим уравнение плоскости:

Запишем условие перпендикулярности плоскостей:

Условие, что искомая плоскость:

через точку А: ;

через точку В: .

Получим систему уравнений:

Складываем 2-е и 3-е уравнения: , 1-е уравнение умножаем на 2 и вычитаем из полученного:

Из 1-го уравнения: .

Из 3-го уравнения: . Принимаем , получаем

.

Уравнение плоскости имеет вид:

№ 4. Найти расстояние от точки до прямой .

Расстояние r найдем по формуле расстояния от точки до прямой, заданной уравнением в канонической форме:

№ 5. Найти длину отрезка, отсекаемого от оси ординат плоскостью, которая проходит через точку перпендикулярно вектору , где В — точка пересечения медиан треугольника, вершины которого совпадают с точками пересечения осей координат с плоскостью

Для нахождения решения найдем уравнение плоскости, которая проходит через точку А в заданном направлении и подставим в это уравнение значение .

Для этого вначале найдем координаты точки В.

Точку пересечения заданной плоскости с осью ОХ найдем из уравнения:

с осью OY:

с осью OZ:

Получим треугольник с вершинами: .

Найдем координаты середины стороны по формуле:

.

— середина стороны .

Теперь найдем точку В, используя свойство: медианы треугольника делятся в точке пересечения в отношении 2:1, считая от вершины. Используем формулу:

Точка пересечения медиан имеет координаты .

Найдем координаты вектора .

Уравнение искомой плоскости, проходящей через точку перпендикулярно вектору имеет вид:

№ 6. Две прямые параллельны плоскости . Первая прямая проходит через точку и пересекает ось абсцисс, вторая — через точку и пересекает ось ординат. Найти косинус острого угла между направляющими векторами этих прямых.

Для нахождения направляющих векторов прямых используем условие параллельности прямой и плоскости

и условие, что прямая проходит через ось абсцисс, т.е. выполняется соотношение в точке (x,0,0).

подставляем из 1-го уравнения во второе, получим

Полагаем тогда .

Получили направляющий вектор первой прямой (6,-2,-3).

Аналогично для второй прямой (она проходит через точку (0,y,0)

Из второго уравнения

Косинус найдем по формуле:

№ 7. Найти координаты центра окружности радиусом 5, касающейся прямой в точке М (2,0), если известно, что точка С расположена в первой четверти.

Переформулируем задачу:

Найти точку, лежащую на прямой, перпендикулярной прямой , проходящей через точку М (2,0) и отстоящую от нее на 5 ед.

Запишем уравнение прямой в виде , коэффициент k найдем из условия перпендикулярности прямых

Получаем уравнение прямой

Используем формулу расстояния между двумя точками:

По условию второе решение не походит, т.к. x<0.

№ 8. Дана кривая

8.1. Доказать, что эта кривая — гипербола.

— это каноническое уравнение гиперболы. Приведем исходное уравнение к этому виду

Это каноническое уравнение гиперболы.

8.2 Найти координаты ее центра симметрии.

Сделаем схематический чертеж:

Центр симметрии гиперболы в точке .

.

8.3. Найти действительную и мнимую полуоси.

8.4. Записать уравнение фокальной оси.

Фокальная ось проходит через фокус , р-фокальный параметр (половина хорды, проведенной через фокус перпендикулярно действительной оси).

Уравнение , где

8.5. Построить данную гиперболу построение проведено в п.8.2.

№ 9. Дана кривая .

9.1. Доказать, что данная кривая — парабола.

Каноническое уравнение параболы , заданное уравнение приведем к этому виду

следовательно, имеем параболу.

9.2. Найти координаты ее вершины.

Если уравнение параболы записано в виде , координаты вершины .

9.3. Найти значение ее параметра р.

Из уравнения—— видно, что .

9.4. Записать уравнение ее оси симметрии.

Данная ось проходит через вершину параболы перпендикулярно оси ОХ, ее уравнение .

9.5. Построить данную параболу.

Все параметры известны. Найдем пересечение с осью OY.

№ 10. Дана кривая .

10.1. Доказать, что эта кривая — эллипс.

Каноническое уравнение эллипса

Общее уравнение кривой второго порядка:

.

Перепишем заданное уравнение:

Введем обозначения:

Если имеем эллипс. Проводим вычисления при a=8, b=6, c=17,d=-14, l=-23, f=-43.

следовательно, исходная кривая — эллипс.

10.2. Найти координаты центра его симметрии.

Применим формулу:

10.3. Найти его большую и малую полуоси.

Для этого приведем уравнение к каноническому виду, вычислим:

Уравнение запишем в виде:

где

Получим уравнение эллипса в новых координатах, где осями координат являются оси, полученные переносом начала координат в центр эллипса и поворотом осей на угол α, определяемый уравнением , при этом угловой коэффициент новой оси

10.4. Записать общее уравнение фокальной оси.

Фокальная ось проходит через фокус перпендикулярно оси . В новых координатах .

Воспользуемся формулой преобразования координат:

Осталось составить уравнение прямой, проходящей через точку с коэффициентом наклона 2. Общий вид такой прямой , получим:

10.5. Построить данную кривую.

Для этого в старой системе координат строим новую систему. Новые оси направлены по прямым — y=2x-1 и . Далее, определим вершины эллипса.

В новых координатах они равны .

В старых: