Вычисление пределов функций, производных и интегралов
Содержание
Задание № 1
Задание № 2
Задание № 3
Задание № 4
Задание № 5
Задание № 7
Задание № 8
Задача № 4
Задача № 5
Задача № 6
Список литературы
Задание № 1
3. б) Найти пределы функции:

Решение
Одна из основных теорем, на которой основано вычисление пределов:
Если существуют
и
,
то:



Следовательно:

Ответ: предел функции

Задание № 2
3. б) Найти производную функции:

Решение
Воспользуемся правилом дифференцирования сложных функций:
Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f.
Тогда

Применим это правило к заданной функции:

Ответ:

Задание № 3
3. Исследовать функцию и построить ее график:

Решение
Найдем область определения функции:
D(y)=R
Исследуем функцию на четность и нечетность, на периодичность.
Условие четности: f(x)=f(-x)
Условие нечетности: f(-x)=-f(x)
при x=1: y=0
при x=-1: y=-4
Условия не выполняются, следовательно, функция не является четной и нечетной.
Периодической называется такая функция, значения которой не изменяются при прибавлении к аргументу некоторого (отличного от нуля) числа – периода функции.
Функция
не периодична.
Найдем промежутки знакопостоянства, выясним поведение функции на концах промежутков.
y=0
при


;


Следовательно, имеем три промежутка:

Определим знак на каждом промежутке:
при x= -1 y=-4 < 0
при x= 0,5 y=0,125 > 0
при x= 2 y=2 > 0
Тогда: для
,
для

Рассмотрим поведение функции на концах промежутков:



Найдем промежутки монотонности функции, ее экстремумы.
Найдем производную функции:

при
,
- точки экстремума, они делят область определения функции на три промежутка:

Исследуемая функция в промежутке
– возрастает
– убывает
- возрастает
Найдем промежутки выпуклости графика функции, ее точки перегиба.
Найдем вторую производную функции:

при
- точка перегиба

Для
,
следовательно, график функции на этом интервале выпуклый вверх.
Для
,
следовательно, график функции на этом интервале выпуклый вниз.
По полученным данным построим график функции.

Рис. 3 График
функции

Задание № 4
Найти интеграл:
3.

Решение
Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:
F(x) + C.
Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.
Замена переменной в неопределенном интеграле производится с помощью подстановки:


Ответ:
.
Задание № 5
Вычислить площадь фигуры, ограниченной линиями, используя определенный интеграл. Сделать чертеж.
,
,
,
.
Решение.
Построим
график функции:

при х=-2: y = 12
при х=-1: y = 5
при х=0: y = 0
при х=1: y = -3
при х=2: y = -4
при х=3: y = -3
при х=4: y = 0
при х=5: y = 5

Рис. 1 График
Найдем точки пересечения графика функции с осью Оx:




Определим площадь полученной фигуры через определенный интеграл:

кв. ед.
Ответ: площадь фигуры, ограниченной заданными линиями = 13 кв. ед.
Задание № 7.
Найти общее решение или общий интеграл дифференциального уравнения, решить задачу Коши для заданных начальных условий:
,
при

Решение
Общий вид
дифференциального уравнения:

Общим решением
дифференциального уравнения первого
порядка называется функция
от переменной x
и произвольной постоянной C,
обращающая уравнение в тождество. Общее
решение, записанное в неявном виде
,
называется общим интегралом.
Решение,
полученное из общего при фиксированном
значении С:
,
где
- фиксированное число, полученное при
заданных начальных условиях
,
называется частным решением, или решением
задач Коши.
Найдем общее решение или общий интеграл:








-
общее решение дифференциального уравнения
Найдем частное
решение для
при


Получаем:

Ответ:
- любое число.
Задание № 8
Найти вероятность случайного события.
Условие: Брошена игральная кость. Какова вероятность того, что выпадет нечетное число очков? Что выпадет шестерка»?
Решение.
Вероятностью события А называется математическая оценка возможности появления этого события в результате опыта. Вероятность события А равна отношению числа, благоприятствующих событию А исходов опыта к общему числу попарно несовместных исходов опыта, образующих полную группу событий.

Исход опыта является благоприятствующим событию А, если появление в результате опыта этого исхода влечет за собой появление события А.
Обозначим в данной задаче выпадение нечетного числа – событие А, выпадение «шестерки» – событие В. На игральной кости шесть граней, очевидно, что на трех из них число нечетное, на одной – «шестерка».
Тогда в соответствии с записанными выше формулами получаем:
.
Ответ: 1.
вероятность выпадения нечетного числа
равна
;
2. вероятность
выпадения «шестерки» равна
.
Методы вычислений и ЭВМ
Задача № 4.
Внедрение автоматизированного способа обработки информации снизило расходы на ее обработку с 238200 руб. до 50175 руб. Определите, на сколько процентов снизились расходы на обработку информации. Приведите рациональный алгоритм вычислений на МК.
Решение:
|
Схема решения |
Алгоритм |
Результат |
|
238200 – 100 % 50175 – х %
|
|
21,064 % |
Задача № 5
Расходы на перевозку почты во II квартале уменьшились на 2,5 % по сравнению с I кварталом; в III квартале увеличились на 2,9 % по сравнению со II кварталом; IV квартале они вновь увеличились на 3,1 % по сравнению с III кварталом. Определите с точностью до 0,1 %, как изменились расходы в IV квартале по сравнению с I кварталом. Запишите рациональный алгоритм вычислений на МК.
Решение:
По условию задачи задано последовательное изменение начального показателя N=100 процентов на
Р1=2,5 %, Р2=2,9 %, Р3= 3,1 %.
Тогда:
Nn = 100(1-2,5/100)(1+2,9/100)(1+3,1/100) = 100(1-0,025)(1+0,029)(1+0,031) = 100*0,975*1,029*1,031 = 103,4 %
Алгоритм выполнения этого вычисления на МК:
100 – 2,5 % + 2,9 % + 3,1 %
Задача № 6
Бригаде монтажников за месяц начислено 16713 руб. Распределите заработную плату между членами бригады пропорционально следующим данным. Приведите рациональный алгоритм вычислений на МК, а также решение задачи с помощью табличного процессора (Excel, Super Calc и др.). Точность 0,01 руб.
|
Табельный номер |
Часовая тарифная ставка, руб |
Отработано часов |
К оплате, руб |
|
03 |
6,6 |
165 |
|
|
04 |
8,8 |
72 |
|
|
05 |
7,5 |
216 |
Алгоритм решения на МК:
6,6 * 165 М+
8,8 * 72 М+
7,5 * 216 М+
>16713 /> >MR MR> * 1089 = М+
C C 633,6 = М+
1620 = М+ >MR>
C
Решение задачи с помощью табличного процессора Excel:
Ввод названий граф документа:
|
Адрес клетки |
Вводимая строка |
|
А1 |
Табельный номер |
|
А2 |
03 |
|
А3 |
04 |
|
А4 |
05 |
|
В1 |
Начислено, руб. (всего) |
|
С1 |
Часовая тарифная ставка, руб. |
|
D1 |
Отработано часов |
|
Е1 |
К оплате, руб. |
Ввод исходных данных:
|
Адрес ячейки |
Исходные данные |
|
В2 |
16713 |
|
С2 |
6,6 |
|
С3 |
8,8 |
|
С4 |
7,5 |
|
D2 |
165 |
|
D3 |
72 |
|
D4 |
216 |
Ввод расчетных формул:
|
Адрес ячейки |
Исходные данные |
|
F2 |
С2*D2 |
|
F5 |
=СУММ(F2:F4) |
|
E2 |
$B$2/$F$5*F2 |
|
E5 |
=СУММ(Е2:Е4) |
Конечный результат:
|
Табельный номер |
Начислено, руб. (всего) |
Часовая тарифная ставка, руб. |
Отработано часов, ч. |
К оплате, руб. |
Ставка, руб. |
|
03 |
16713 |
6,6 |
165 |
5445,00 |
1089,00 |
|
04 |
8,8 |
72 |
3168,00 |
633,60 |
|
|
05 |
7,5 |
216 |
8100,00 |
1620,00 |
|
|
16713,00 |
3342,60 |
Список литературы
Выгодский М.Я. Справочник по высшей математике. – М.: АСТ, 2005. – 991 с.
Гусак А.А., Гусак Г.М., Бричкова Е.А. Справочник по высшей математике. – Минск. ТетраСистемс, 2004. – 640 с.
Гмурман В.Е. Теория вероятности и математическая статистика. – М.: Высшая школа, 1998. – 479 с.
Миносцев В.Б. Курс высшей математики. Часть 2. М. 2005. – 517 с.
Пономарев К.К. Курс высшей математики. Ч. 2. – М.: Инфра-С, 1974. – 520 с.

