Основы научного исследования и планирование экспериментов на транспорте

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

ЗАДАНИЕ

ПОДГОТОВКА ПЛАНА ПРОВЕДЕНИЯ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА

ПЛАН ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ОПЫТОВ

УРАВНЕНИЕ РЕГРЕССИИ

РЕЗУЛЬТАТЫ ОПЫТОВ В ГРАФИЧЕСКОМ ВИДЕ

ПРОВЕРКА АДЕКВАТНОСТИ И РАБОТОСПОСОБНОСТИ МОДЕЛИ

ВЫВОД

ЛИТЕРАТУРА

ВВЕДЕНИЕ

Современный этап научных исследований характеризуется тем, что наряду с классическим натурным экспериментом все шире применяется вычислительный эксперимент, проводимый на математической модели с помощью ЭВМ. Проведение вычислительного эксперимента значительно дешевле и мобильнее, чем проведение аналогичного натурного, и в ряде случаев вычислительный эксперимент является единственным возможным инструментом исследователя.

Математический аппарат теории планирования и обработки результатов экспериментов в полной мере может быть применен как к натурным, так и к вычислительным экспериментам. В данной контрольно-курсовой работе под проводимым экспериментом будем понимать эксперимент на математической модели, выполненный при помощи ЭВМ.

Основная задача теории планирования и обработки результатов экспериментов – это построение статистической модели изучаемого процесса в виде Y = f(X>1>, X>2>,…X>k>), где X – факторы, Y – функция отклика. Полученную функцию отклика можно использовать для оптимизации изучаемых процессов, то есть определять значения факторов, при которых явление или процесс будет протекать наиболее эффективно.

Объект исследования – одноцилиндровый четырехтактный дизельный двигатель ТМЗ-450Д.

Предмет исследования – процесс функционирования двигателя.

Цель исследования – анализ влияния одного из параметров двигателя на показатели его работы и получение соответствующей функциональной зависимости

ЗАДАНИЕ

Область планирования фактора X: X>min> = 0,012 м, X>max> = 0,055 м.

План проведения эксперимента:

№ опыта

x>j>

1

-1

2

-0,8

3

-0,6

4

-0,4

5

-0,2

6

0

7

0,2

8

0,4

9

0,6

10

0,8

11

1

Используя приведенные исходные данные и программу расчета функционирования двигателя, проанализировать влияние радиуса кривошипа (X) на величину максимальной температуры (Y) рабочего тела в цилиндре двигателя. Получить функциональные зависимости между указанными величинами.

ПОДГОТОВКА ПЛАНА ПРОВЕДЕНИЯ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА

Используя указанный в задании план проведения эксперимента в кодовом виде, а также область планирования фактора Х (Х>min>, Х>max>), подготовим план проведения данного однофакторного эксперимента.

; ;

; ;

; ;

; ;

; ;

; ;

; ;

; ;

.

где - интервал (шаг) варьирования фактора;

- натуральное значение основного уровня фактора;

- кодированное значение фактора x;

- натуральное значение фактора в j-ом опыте, где j = 1, 2,…, N; N – число опытов.

В дальнейших расчетах будем использовать только натуральные значения факторов и функции отклика.

ПЛАН ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ОПЫТОВ

Используя выданную преподавателем программу расчета (математическую модель) проведем на ЭВМ необходимое количество опытов N. Полученные результаты представим в виде таблицы 1.

Табл. 1

№ опыта

X>j>

Y>j>

1

0,012

3601,8348

2

0,0163

2712,4310

3

0,0206

2195,4343

4

0,0249

1855,3637

5

0,0292

1626,8644

6

0,0335

1461,2450

7

0,0378

1339,577

8

0,0421

1250,5135

9

0,0464

1173,9877

10

0,0507

1126,4606

11

0,055

1092,5573

УРАВНЕНИЕ РЕГРЕССИИ

Получим функциональную зависимость Y = f(X) (уравнение регрессии) с помощью метода наименьших квадратов (МНК). В качестве аппроксимирующих функций использовать линейную (Y = a>0> + a>1>X) и квадратичную зависимости (Y = a>0> + a>1>X + a>2>X2). Посредством МНК значения a>0>, a>1> и a>2> найдем из условия минимизации суммы квадратов отклонений измеренных значений отклика Y>j> от получаемых с помощью регрессионной модели, т. е. путем минимизации суммы:

.

Проведем минимизацию суммы квадратов с помощью дифференциального исчисления, путем приравнивания к 0 первых частных производных по a>0>, a>1> и a>2>.

Рассмотрим реализацию метода наименьших квадратов применительно к уравнению вида Y = a>0> + a>1>X. Получим:

;

.

Выполнив ряд преобразований, получим систему нормальных уравнений метода наименьших квадратов:

Решая эту систему, найдем коэффициенты a>1> и a>0>:

; .

Для квадратичной зависимости Y = a>0> + a>1>X + a>2>X2 система нормальных уравнений имеет вид:

Вычислим из N опытов необходимые суммы и данные представим в виде таблицы 2.

Табл. 2

№ опыта

X>j>

Y>j>

X>j>2

X>j> Y>j>

X>j>2Y>j>

X>j>3

X>j>4

1

0,012

3601,8348

0,000144

43,222017

0,5186642

0,0000017

0,000000020736

2

0,0163

2712,4310

0,0002656

44,212625

0,7204216

0,0000043

0,0000000705433

3

0,0206

2195,4343

0,0004243

45,225946

0,9315227

0,0000087

0,0000001800304

4

0,0249

1855,3637

0,00062

46,198556

1,1503254

0,0000154

0,0000003844

5

0,0292

1626,8644

0,0008526

47,50444

1,3870645

0,0000248

0,0000007269267

6

0,0335

1461,2450

0,0011222

48,951707

1,6398091

0,0000375

0,0000012593328

7

0,0378

1339,577

0,0014288

50,63601

1,9139876

0,000054

0,0000020414694

8

0,0421

1250,5135

0,0017724

52,646618

2,2164101

0,0000746

0,0000031414017

9

0,0464

1173,9877

0,0021529

54,473029

2,52747781

0,0000998

0,0000046349784

10

0,0507

1126,4606

0,0025704

57,111552

2,8954543

0,0001303

0,0000066069561

11

0,055

1092,5573

0,003025

60,090651

3,3049858

0,0001663

0,000009150625

Σ

0,3685

19436,266

0,0143782

550,27311

19,206122

0,0006174

0,0000282173998

Для уравнения регрессии вида Y = a>0> + a>1>X найдем коэффициенты a>1> и> >a>0>:

.

.

Для уравнения регрессии вида Y = a>0> + a>1>X + a>2>X2 найдем коэффициенты a>1 >, a>2> и> >a>0>:

Решим систему нормальных уравнений способом Крамера:

.

.

.

Найдем определитель (det) матрицы:

.

; ; .

; ; .

РЕЗУЛЬТАТЫ ОПЫТОВ В ГРАФИЧЕСКОМ ВИДЕ

Построим графики функций Y = a>0> + a>1>X ; Y = a>0> + a>1>X + a>2>X2 :

X

0,012

0,0163

0,0206

0,0249

0,0292

0,0335

0,0378

0,0421

0,0464

0,0507

0,055

Y=a>o>+a>1>X

2833,143

2619,9

2406,658

2193,415

1980,172

1766,929

1553,686

1340,443

1127,2

913,9573

700,7144

Y=a>0>+a>1>X+a>2> X2

3215,923

2748,207

2330,714

1963,444

1646,397

1379,574

1162,973

996,5962

880,4424

814,5117

798,8043

ПРОВЕРКА АДЕКВАТНОСТИ И РАБОТОСПОСОБНОСТИ МОДЕЛИ

Для проверки адекватности модели определим абсолютные Y>j> и относительные погрешности в каждом из опытов.

Y>j> = - Y>j>; ,

где – расчетное значение функции (отклика) в j-ой точке.

Данные представим в виде таблицы 3.

Табл. 3

j

Y = a>0> + a>1>X

Y = a>0> + a>1>X + a>2>X2

Y>j>

Y>j>

1

-768,6918

-0,21342

-385,9118

-0,10714

2

-92,531

-0,03411

35,776

0,01319

3

211,2237

0,09621

135,2797

0,06162

4

338,0513

0,1822

108,0803

0,05825

5

353,3076

0,21717

19,5326

0,012

6

305,684

0,20919

-81,671

-0,05589

7

214,109

0,15983

-176,604

-0,13183

8

89,9295

0,07191

-253,9173

-0,20305

9

-46,7877

-0,0398

-293,5453

-0,25004

10

-212,5033

-0,1886

-311,9489

-0,27693

11

-391,8429

-0,35865

-293,753

-0,26887

Просматривая значения этих погрешностей, исследователь может легко понять, какова погрешность предсказания в точках, где проводились опыты, устраивают его или нет подобные ошибки. Таким образом, путем сопоставления фактических значений отклика с предсказанными по уравнению регрессии можно получить достаточно надежное свидетельство о точностных характеристиках модели.

С помощью анализа работоспособности регрессионной модели выясним практическую возможность ее использования для решения какой-либо задачи. Это анализ будем проводить, вычисляя коэффициент детерминации (квадрат корреляционного отношения). Коэффициент детерминации R2 вычисляется по формуле:

где – общее среднее значение функции отклика.

.

Вычислим из N опытов необходимые суммы и данные представим в виде таблицы 4.

Табл. 4

Y = a>0> + a>1>X

Y = a>0> + a>1>X + a>2>X2

j

1

3366863,62479

1136803,18835

1952571,23764

2

893965,95743

727552,24249

853898,13319

3

183613,13271

409247,73017

312848,71152

4

7819,94095

181886,66602

37616,467

5

19619,28834

45470,75597

14328,99238

6

93445,31841

0,00002

147047,20405

7

182633,3815

45474,39816

359786,00774

8

266689,37885

181893,9504

589419,20142

9

351584,44898

409258,65674

602866,06259

10

410205,24101

727568,0054

801506,847

11

454782,94891

1136822,67874

759273,70255

Σ

6231222,66188

5001978,27246

5732724,84892

Для уравнения регрессии Y = a>0> + a>1>X:

Для уравнения регрессии Y = a>0> + a>1>X + a>2>X2:

Т.к. в уравнениях регрессии оба уравнения принято считать работоспособными. В уравнении регрессии вида Y = a>0> + a>1>X + a>2>X2

, а в уравнении регрессии вида Y = a>0> + a>1>X . Из этого следует, что в уравнении вида Y = a>0> + a>1>X + a>2>X2 найденное значение регрессии лучше объясняет вариацию в значениях Y (N >> (d+1)), чем в уравнении вида Y = a>0> + a>1>X.

ВЫВОД

В процессе выполнения контрольно-курсовой работы мы научились:

- разрабатывать план проведения вычислительного эксперимента;

- проводить вычислительный эксперимент на ЭВМ и накапливать статистическую информацию;

- обрабатывать полученные статистические данные с помощью регрессионного анализа и получать формульные зависимости, связывающие значение выходной переменной (отклика) объекта с входными переменными (факторами);

- графически представлять и анализировать полученные результаты (проверять адекватность и работоспособность регрессионной модели);

- вычислять коэффициент детерминации (квадрат корреляционного отношения) и анализировать полученные результаты.

ЛИТЕРАТУРА

1. Гурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1972.

2.Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента. – Минск, 1982.

3.Румшинский Л.З. Математическая обработка результатов эксперимента. Справочное руководство. – М.: Наука, 1971.