Решение задач по курсу теории вероятности и математической статистики

Вариант 1

1

Три стрелка делают по одному выстрелу по одной и той же цели. Вероятности поражения целей равны соответственно р>1 >= 0,9, р>2 >= 0,8, р>3 >= 0,7.

Найти вероятности того, что:

а) все три стрелка попадают в цель;

б) только один из них попадает в цель;

в) хотя бы один стрелок попадает в цель.

Обозначим события: А – все 3 стрелка попадают в цель; В – только один стрелок попадает в цель; С – хотя бы один стрелок попадает в цель.

Вероятности промахов равны соответственно: q>1> = 0,1, q>2> = 0,2, q>3> = 0,3.

а) Р(А) = р>1>2>3> = 0,9∙0,8∙0,7 = 0,504.

б) Р(В) = p>1>q>2>q>3> + q>1>p>2>q>3> + q>1>q>2>p>3> = 0,9∙0,2∙0,3 + 0,1∙0,8∙0,3 + 0,1∙0,2∙0,7 = 0,092.

в) Событие – все три стрелка промахиваются. Тогда

Р(С) = 1 – Р() = 1 – 0,1∙0,2∙0,3 = 1 – 0,006 = 0,994.

11

Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз

У нас n достаточно великó, р малó, λ = np = 150 ∙ 0,02 = 3 < 9, k = 5. Справедливо равенство Пуассона: . Таким образом,

21

По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).

х>

1

2

3

4

5

р>

0,05

0,18

0,23

0,41

0,13

Последовательно получаем:

>5>

М(Х) = ∑ х> = 0,05 + 2∙0,18 + 3∙0,23 + 4∙0,41 + 5∙0,13 = 3,39.

i=1

>5>

D(X) = ∑ x>i>²p>i> – M² = 0,05 + 2²∙0,18 + 3²∙0,23 + 4²∙0,41 + 5²∙0,13 – 3,39² = i=1

1,1579.

σ(Х) = √D(X) = √1,1579 = 1,076.

31

Случайная величина Х задана интегральной функцией

а) дифференциальную функцию f(x) (плотность вероятности);

б) математическое ожидание и дисперсию величины х;

в) вероятность того, что X примет значение, принадлежащее интервалу

;

г) построить графики функций F(x) и f(x).

Последовательно получаем:

а) ;

в) Р(a < x < b) = F(b) – F(a)  P= F(1) – F= – 0 = .

Графики функций поданы далее.

41

Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 2; β = 13; а = 10; σ = 4.

Используем формулу Р(α < x < β) =

Имеем: Р(2 < x < 13) == Ф– Ф(–2).

Поскольку функция Лапласа есть нечетная, можем записать:

Ф– Ф(–2) = Ф+ Ф(2) = 0,2734 + 0,4772 = 0,7506.

51

По данному статистическому распределению выборки

х>

4

5,8

7,6

9,4

11,2

13

14,8

16,6

m>

5

8

12

25

30

20

18

6

Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

Для решения задачи введём условную переменную

, где С – одно из значений х>, как правило, соответствующее наибольшему значению m>, а h – это шаг (у нас h = 1,8).

Пусть С = 11,2. Тогда .

Заполним таблицу:

x>i>

m>i>

x>i

x>i>m>i>

(x>i>´)²m>i>

4

5

– 4

– 20

80

5,8

8

– 3

– 24

72

7,6

12

– 2

– 24

48

9,4

25

– 1

– 25

25

11,2

30

0

0

0

13

20

1

20

20

14,8

18

2

36

72

16,6

6

3

18

54

∑ = 124

∑ = – 19

∑ = 371

Используя таблицу, найдём ;

D(x´) = ∑(x>i>´)²m>i> – (x>i>´)² = – (– 0,1532)² = 2,9685.

Теперь перейдем к фактическим значениям х и D(x):

_

x = x´h + C = – 0,1532∙1,8 + 11,2 = 10,9242; D(x) = D(x´)∙h² = 2,9685∙1,8² = 9,6178;

σ(x) = √D(x) = √9,6178 = 3,1013.

61

По данной корреляционной таблице найти выборочное уравнение регрессии.


у х

6

9

12

15

18

21

n>y>

5

4

2

6

15

5

23

28

25

18

44

5

67

35

1

8

4

13

45

4

2

6

n>x>

4

7

42

52

13

2

n = 120

Для упрощения расчетов введем условные переменные

u = , v = . Составим таблицу:

v u

– 3

– 2

– 1

0

1

2

n>v>

n>uv>uv

– 2

4 6

2 4

6

32

– 1

5 2

23 1

28

33

0

18 0

44 0

5 0

67

0

1

1 –1

8 0

4 1

13

3

2

4 2

2 4

6

16

n>u>

4

7

42

52

13

2

n = 120

∑ = 84

Последовательно получаем:

;

;

;

;

σ>u>² = – (u)² = 1,058 – (– 0,425)² = 0,878; σ>u> = √0,878 = 0,937;

σ>v>² = – (v)² = 0,742 – (– 0,125)² = 0,726; σ>v> = √0,726 = 0,8521;

По таблице, приведённой выше, получаем ∑n>uv>uv = 84.

Находим выборочный коэффициент корреляции:

Далее последовательно находим:

x = u∙h>1> + C>1> = – 0,425∙3 + 15 = 13,725; y = v∙h>2> + C>2> = – 0,125∙10 + 25 = 23,75;

σ>x> = σ>u>∙h>1> = 0,937∙3 = 2,811; σ>y> = σ>v>∙h>2> = 0,8521∙10 = 8,521.

Уравнение регрессии в общем виде: Таким образом,

упрощая, окончательно получим искомое уравнение регрессии:

Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.

1) при х = 12 по таблице имеем

по уравнению:

у>х=12> = 2,457∙12 – 9,968 = 19,516; ε>1> = 19,762 – 19,516 = 0,246;

2) при х = 18 по таблице имеем

по уравнению:

у>х=18> = 2,457∙18 – 9,968 = 34,258; ε>2> = 34,258 – 34,231 = 0,027.

Отмечаем хорошее совпадение эмпирических и теоретических данных.

Вариант 2

2

Для сигнализации об аварии установлены 3 независимо работающие устройства. Вероятности их срабатывания равны соответственно р>1> = 0,9, р>2> = 0,95, р>3> = 0,85. Найти вероятности срабатывания при аварии:

а) только одного устройства;

б только двух устройств;

в) всех трёх устройств.

Обозначим события: А – срабатывает только одно устройство; В – срабатывают 2 устройства; С – срабатывают все 3 устройства. Вероятности противоположных событий (не срабатывания) соответственно равны q>1> = 0,1, q>2> = 0,05, q>3> = 0,15. Тогда

а) Р(А) = p>1>q>2>q>3> + q>1>p>2>q>3> + q>1>q>2>p>3> = 0,9∙0,05 ∙0,15 + 0,1∙0,95∙0,15 + 0,1∙0,05∙0,85 = 0,02525.

б) Р(В) = p>1>p>2>q>3> + p>1>q>2>p>3> + q>1>p>2>p>3> = 0,9∙0,95∙0,15 + 0,9∙0,05∙0,85 + 0,1∙0,95∙0,85 = 0,24725.

в) Р(С) = р>1>2>3> = 0,9∙0,95∙0,85 = 0,72675.

12

В партии из 1000 изделий имеется 10 дефектных. Найти вероятность того, что из взятых наудачу из этой партии 50 изделий ровно 3 окажутся дефектными.

По условию n = 50, k = 3. Поскольку р малó, n достаточно большое, в то же время nр = 0,5 < 9, справедлива формула Пуассона: .

Таким образом,

22

По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).

х>

2

3

4

5

8

р>

0,25

0,15

0,27

0,08

0,25

Последовательно получаем:

5

М(Х) = ∑ х> = 2∙0,25 + 3∙0,15 + 4∙0,27 + 5∙0,08 + 8∙0,25 = 4,43.

i=1

5

D(X) = ∑ x>i>²p>i> – M² = 2²∙0,25 + 3²∙0,15 + 4²∙0,27 +5²∙0,08 + 8²∙0,25 – 4,43² і=1

= 5,0451.

σ(Х) = √D(X) = √5,0451 = 2,246.

32

Случайная величина Х задана интегральной функцией

а) дифференциальную функцию f(x) (плотность вероятности);

б) математическое ожидание и дисперсию величины х;

в) вероятность того, что X примет значение, принадлежащее интервалу

;

г) построить графики функций F(x) и f(x).

Последовательно получаем:

а) ;

в) Р(a < x < b) = F(b) – F(a)  P= F(1) – F=

Графики функций приводятся далее.


42

Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 5; β = 14; а = 9; σ = 5.

Используя формулу имеем

Поскольку функция Лапласа есть нечетная, можем записать:

52

По данному статистическому распределению выборки

х>

7,6

8

8,4

8,8

9,2

9,6

10

10,4

m>

6

8

16

50

30

15

7

5

Определить: а) выборочную среднюю; б) выборочную дисперсию; в) выборочное среднее квадратическое отклонение.

Для решения задачи введём условную переменную

где С – одно из значений х>, как правило, соответствующее наибольшему значению m>, а h – это шаг (у нас h = 0,4).

Пусть С = 8,8. Тогда

Заполним таблицу:

x>i>

m>i>

x>i

x>i>m>i>

(x>i>´)²m>i>

7,6

6

– 3

– 18

54

8

8

– 2

– 16

32

8,4

16

– 1

– 16

16

8,8

50

0

0

0

9,2

30

1

30

30

9,6

15

2

30

60

10

7

3

21

63

10,4

5

4

20

80

∑ = 137

∑ = 51

∑ = 335

Используя таблицу, найдём

;

D(x´) = ∑(x>i>´)²m>i> – (x>i>´)² = – 0,3723² = 2,3067.

Теперь перейдем к фактическим значениям х и D(x):

x = x´h + C = 0,3723∙0,4 + 8,8 = 8,9489; D(x) = D(x´)∙h² = 2,3067∙0,4² = 0,3961;

σ(x) = √D(x) = √0,3961 = 0,6075.

62

По данной корреляционной таблице


у х

4

8

12

16

20

24

n>y>

10

2

5

7

20

6

8

4

18

30

8

46

10

64

40

5

20

4

29

50

3

14

2

5

22

n>x>

2

19

62

48

6

3

n = 140

найти выборочное уравнение регрессии.

Для упрощения расчетов введём условные переменные

Составим таблицу.

v u

– 2

– 1

0

1

2

3

n>v>

n>uv>uv

– 2

2 4

5 2

7

18

– 1

6 1

8 0

4 –1

18

2

0

8 0

46 0

10 0

64

0

1

5 0

20 1

4 2

29

28

2

3 0

14 2

2 4

5 6

22

66

n>u>

2

19

62

48

6

3

n = 140

∑ = 114

Последовательно получаем:

;

;

;

;

σ>u>² = – (u)² = 0,9 – 0,329² = 0,792; σ>u> = √0,792 = 0,89;

σ>v>² = – (v)² = 1,164 – 0,293² = 1,079; σ>v> = √1,079 = 1,0385;

По таблице, приведённой выше, получаем ∑n>uv>uv = 114.

Находим выборочный коэффициент корреляции:

Далее последовательно находим:

x = u∙h>1> + C>1> = 0,329∙4 + 12 = 13,314; y = v∙h>2> + C>2> =0,293∙10 + 30 = 32,929;

σ>x> = σ>u>∙h>1> = 0,89∙4 = 3,56; σ>y> = σ>v>∙h>2> = 1,0385∙10 = 10,385.

Уравнение регрессии в общем виде: Таким образом,

упрощая, окончательно получим искомое уравнение регрессии:

Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.

1) при х = 12 по таблице имеем

по уравнению: у>х=12> = 2,266∙12 + 2,752 = 29,944; ε>1> = 30,484 – 29,944 = 0,54;

2) при х = 16 по таблице имеем

по уравнению: у>х=16> = 2,266∙16 + 2,752 = 39,008; ε>2> = 39,167 – 39,008 = 0,159.

Отмечаем хорошее совпадение эмпирических и теоретических данных.