Математика в древнем Китае

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО и «Сыктывкарский государственный университет»

Исторический факультет

Секция по связям с общественностью

Реферат

Математика в Древнем Китае

Преподаватель

М.В. Холопова

Исполнитель

Студент 516 группы

А.А. Хозяинова

Сыктывкар 2007

Содержание

Введение

Периоды развития математики в Китае

Древнее математическое «Десятикнижье»

Математика Китая

Заключение

Список литературы

Введение

Математика в Китае развивалась с глубокой древности более или менее самостоятельно и достигла своего наибольшего развития к XIV в. н.э. Далее в Китай проникает западная математика, принесённая в основном европейскими миссионерами, и это уже другая эпоха в истории науки Китая.

Наше внимание будет уделено математики древнего Китая в период со II в. до н.э. по VII в. н.э.

История математики древнего Китая рассматривается в работе в виде нескольких глав, каждая из которых является, по существу, независимой друг от друга о наиболее характерных проблемах математики древнего Китая.

Проблемы эти «начальные», свойственны развитию математики с самых древних времён, они касаются развития понятия числа, фигуры и её площади, тела и его объёма, формирование простейших теоретико-числовых понятий среднего арифметического, общего наибольшего делителя, наименьшего общего кратного, история теоремы Пифагора и т.д.

Наличие у китайских математиков высоко разработанной техники вычисления и интереса к общим алгебраическим методам обнаруживается в ряде китайских текстов, принадлежащих древним и средневековым авторам.

Эти тексты резко делятся на две группы:

К первой группе относится сборник «Десяти классических трактатов по математики» («Десятикнижье»). В этом сочинении, положившем начало прогрессу математики в Китае вплоть до XIV в., описываются, в частности, способы извлечения квадратного и кубического корней из целых чисел.

Ко второй группе относятся более поздние сочинения; они индивидуальны: это книги Цинь Цзю-шао, Чжу Ши-цзе, Ли Е, Ян Хуэя и др.

Интерес к истории китайской науки значительно возрос в настоящее время не только в самом Китае. История китайской математики стала предметом пристального внимания целого ряда исследователей.

Периоды развития математики в Китае

Периодизация является сложным вопросом, который живо дискутируется учёными в самых разных аспектах: и относительно всемирной математики и науки вообще, и относительно китайской математики. Каждая из предложенных трактовок даёт определённую характеристику.

Качественное представление об общем развитии математики даёт периодизация, предложенная академиком А.Н.Колмогоровым. Согласно его периодизации, выделяются четыре этапа:

    накопление математических знаний и создание практической математики;

    период элементарной математики, или математики постоянных величин;

    создание математики переменных величин;

    период современной математики.

Китайская математика целиком укладывается во второй период развития, период математики постоянных величин. Отмечаются поэтому отдельные наиболее яркие открытия китайских учёных:

- метод численного решения уравнений n-степени (метод Руффини – Горнера);

- теоретико-числовые задачи на системы сравнений первой степени с одним неизвестным (сравнения Гаусса);

- метод решения систем линейных уравнений (метод Гаусса);

- вычисления числа π (пи).

При подробном изложении истории китайской математики обычно предлагаются более специальная периодизация, с привлечением традиционной китайской хронологии. Согласно Ли Яню, история китайской математики делится на пять периодов:

Первый период – «глубокая древность» (шан гу) обнимает период со времени легендарного Хуанди до начала Хеньской династии – 2700 – 100 до н.э.;

Второй – «древность» (чжун гу) – делится с 100 г. до н.э. до 600 г. н.э., включая династии Хань и Суй;

Третий период – «поздняя древность» (цзинь гу) – 600 – 1367 гг. н.э. Это династии Тан, Сун и Юань;

«Новое время» (цзинь ши) – 1368 – 1750 гг. н. э. – четвёртый период, охватывающий династии Мин и Цин до её середины;

И последний период – «новейший» ( цзуй цзинь ши) – тянется с 1750 г. вплоть до «освобождения» в 1949 г.

Рассмотрим развитие математики в Китае в рамках условной периодизации, предложенной Ли Янем.

Первый период – обычный начальный этап развития науки во всякой древней цивилизации. Это эпоха накопления знаний в связи с запросами хозяйства и появления первых специальных текстов, руководств-решебников.

Сыма Цянь (II в. до н.э.) китайский Геродот, начал свой исторический труд с мифического Хуанди, который будто бы правил с 2698 по 2598 гг. до н.э. Его министр Ли Шоу ввёл «девять чисел», сообщает Сыма Цянь в своих «Исторических записках».

К таким незапамятным временам относят употребление циркуля гуй и угольника цзюй. Эти инструменты символизируют порядок (гуй-цзюй).

В эпоху Инь (18-12 вв. до н.э.) пользовались календарём.

В середине первого тысячелетия (время начала плавки железа) в Китае произошли существенные изменения во всех сферах жизни. К эпохе Конфуция (VI в. до н.э.) математика оформляется в самостоятельную науку, которая в древности носила название «Искусства вычисления» (суань шу) и подлежала изучению благородным человеком (цзюньжень).

Развитие математики в этот «золотой век» совсем не исследовано, не сохранилось ни одного специального текста. Однако эти тексты несомненно послужили основой для составления более поздних «Математического трактата о Чжоу-би» и классической «Математики в девяти книгах».

О математики данного периода, периода её становления, можно судить по отдельным фрагментам из указанных выше двух специальных сочинений, а также на основании нематематической литературы.

К такой литературе относится «Книга перемен» (VIII-VII вв. до н.э.), в основу которой положены 64 гексаграммы. Судя по этой книги, математики занимались вопросами комбинаторики. Они были знакомы с двоичной и троичной системами счисления. Также сюда можно отнести трактаты Чжуан-цзы и Мо-цзы. С первым именем связано развитие диалектики в древнем Китае, со вторым – логики, оптики, динамики, а также ряд определений и аксиом геометрии.

Второй период связан с Хеньской династией, время правления которой делится на две половины: первую – Раннею, или Западные (202 г. до н.э. – 9 в. н.э.), и вторую – Позднюю, или Восточную (25 – 220 гг. н. э.). И после Хеньской империи Троецарствие…

В этот период происходит разделение наук на ортодоксальные и не ортодоксальные. Из наук астрономия, математика, например, считались официальными науками. А вот, например, та часть медицины которая опиралась на натурфилософские идеи, считалась ортодоксальной, а другая, которая основывалась на магии, - неортодоксальной.

От второго периода в истории математики сохранилось много имён, связанных с математикой. Многие из них занимались проблемой числа π.

С 192 г начинается эпоха Троецарствия. К этому времени были написаны почти все трактаты математического «Десятикнижья», но сам сборник был составлен в начале третьего периода.

Третий период, период расцвета математики в Китае, украшен именами крупных учёных: Цинь Цзю-шао, Чжу Ши- цзе, Шэнь Ко, Го Шоу-цзиня, Ли Е, Ян Хуэя и другие, - создавшие своим своеобразную китайскую алгебраическую школу.

Четвёртый период – период упадка классической математики и развития, «народных методов». Наблюдается широкое распространение руководств по правилам вычислений на китайских счетах, рифмованные риторические правила. Появляются первые западные миссионеры, и сними первые переводы «Начал» Евклида и др. западной литературы.

В пятый период работа математиков проходит в двух направлениях: теоретическое обоснование принятых ранее без доказательств западных методов и обработка и развитие старых, традиционных проблем.

Древнее математическое «Десятикнижье»

Сборник «Суань цзин ши шу» или просто «Десятикнижье» был составлен в VI столетии Чжень Луанем прокомментирован Ли Чунь-фэном в VII в.

Тексты, входящие в «Десятикнижье», были написаны на протяжении III-VI вв. н.э. Они различны, однако обладают и некоторыми общими свойствами. Все тексты, по существу безымянные, хотя некоторые заголовки трактатов содержат имена авторов.

Вопросы, представленные в трактатах «Десятикнижья», более всего являются арифметико-алгебраическими, а не геометрическими. Также рассмотрены некоторые вопросы календаря и даже музыкальной гаммы.

    Классическая «Математика в девяти книгах».

«Математика в девяти книгах» (Цзю чжан Суань шу) – центральное сочинение математического «Десятикнижья». Самое большое по объёму и самое содержательное, оно является одним из замечательных памятников древнего Китая времени династии Ранней Хань (206 г. до н.э. – 7 г.н.э.), правившей в одной из обширных и могущественнейших империй древнего мира.

Математический материал: правила действия дробями, алгоритм Евклида, пропорции и прогрессии, правила извлечения корней, вычисление различных площадей и объёмов, теорему Пифагора и применение подобия прямоугольных треугольников, формулы для пифагоровых чисел, вопросы практической геометрии, решение системы линейных уравнений и т.д.

Сочинение состоит из девяти довольно самостоятельных книг:

книга I «Измерение полей»;

книга II «Соотношение между различными видами зерновых культур»;

книга III «Деление по ступеням»;

книга IV «Шао-гуан» (метод извлечения квадратных кубических корней);

книга V «Оценка работ»;

книга VI «Пропорциональное распределение»;

книга VII «Избыток-недостаток»;

книга VIII «Правило фен-чен»;

книга IX «Соотношение между катетами и гипотенузой в прямоугольном треугольнике».

«Математика в девяти книгах» является первым собственно математическим сочинением из ряда классических в древнем Китае.

    Сочинение Лю Хуэя по практической геометрии.

Лю Хуэй, математик III в. н.э., известен как основной комментатор «Математики в девяти книгах». Он обозначил метод решения – чжун-ча, т.е. «двухсловная разность» в самостоятельном трактате – « Математический трактат о морском острове». Этот трактат содержит девять задач. Они, по-видимому, сыграли большую роль в науке.

    Метрологический трактат Сунь-цзы.

Историки установили, что это сочинение не принадлежит знаменитому древнекитайскому полководцу V в. до н.э. Сунь-цзы. Композиция: три книги-цзюня содержит 64 задачи.

    Математический трактат Чжан Цю-цзяня.

Этот трактат написан примерно через 200 лет после написания «Метрологический трактат Сунь-цзы». Математический трактат Чжан Цю-цзяня – второй по размеру текст в «Десятикнижьи» после «Математики в девяти книгах». Он состоит из трёх книг: первой, средней, последней. Всего в них 92 задачи.

    Практическое руководство для чиновников пяти ведомств.

Небольшой анонимный «Математический трактат пяти ведомств» относится приблизительно к IV в.

    Арифметическое пособие Сяхоу Яна.

Текст относится к середине VI в. Трактат состоит из трёх книг, он выделяется особым стремлением к облегчению производства операций на счётном приборе. Всего 73 задачи, причём в первой книге нет задач.

    Два трактата Чжень Луаня.

Чжень Луань жил в VI столетии н.э., был астрономом во время династии Северная Чжоу (557-583) и участвовал в состоянии календаря Тяньхе. Он изучил буддизм и написал «Трактат о весёлом пути» в трёх свитках. Чжень Луэнь – составитель и комментатор математического «Десятикнижья», автор одного из трактатов этого сборника: «Искусство счёта в Пятикнижие».

    Трактат Ван Сяо-туна об уравнениях третьей степени.

Весь трактат в целом посвящён чётко одной проблеме – численному решению уравнений третьей степени, а также биквадратных уравнений. Он состоит из трёх групп задач. Ван Сяо-тун употреблял специальную терминологию, возможно принадлежащую ему или общеупотребительную в его время.

    Трактат о гномоне.

«Математический трактат о Чжоу-би» - самый ранний текст из сохранившихся по истории китайской математики. Он состоит из двух свитков: верхнего и нижнего.

Таким образом, на протяжении пяти столетий были составлены и обработаны все десять трактатов математического «Десятикнижья».

Математика Китая

Техника Вычислений.

Мало известна техника вычислений древнего Китая, которую иногда совсем не упоминают, хотя существенным образом дополняет общую картину развития математики в древности.

Китайская техника счёта была основана на десятичной нумерации, но пользовались позиционным принципом. В древнем Китае большую роль играла счётная доска с осуществлённой на ней позиционной системой счисления.

Китайские источники существенным образом дополняют общую картину развития вычислительных методов в древности. Они позволяют более полно выяснить различные вопросы, например:

- система счисления;

- арифметика целых чисел;

- десятичные дроби;

Понятия числа. Арифметические и теоретико-числовые проблемы.

Здесь рассматривается алгебраический путь перехода от целых чисел к числам рациональным. Тот исторический процесс, который происходил в древнем Китае при освоении понятия числа, носил достаточно общий характер и имел место во всех древних цивилизациях:

- обыкновенные дроби;

- пропорции и прогрессии;

- проблема деления с остатком.

Алгебра. Решение уравнений.

Алгебраические методы характерны для китайской математики. Достижение китайских алгебраистов – наиболее известная часть истории математики в Китае, известная, однако не в полной мере. Заметим, что древняя алгебра излагалась словесно, без символики:

- линейные системы;

- решение уравнений высших степеней численным методом;

Геометрия. Применение алгебраических методов к геометрическим задачам.

Здесь рассматривались методы, которыми пользовались при решении различных задач прикладного характера. Существует обоснованный взгляд на китайскую математику как на вычислительную, для которой характерны алгебраические методы:

- измерение площадей и объёмов;

- теорема Пифагора;

- измерение круга и шара;

- определение расстояний до недоступных предметов.

Заключение

На основании всего вышеизложенного можно сделать вывод о том, что развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. дало сильный толчок для дальнейшего её совершенствования и применение разработанных методов в будущем.

Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел ещё в эпоху Инь, изобретение в дальнейшем счётной доски для проведения на ней вычислений привело к появлению позиционной системы счисления вместе с десятичными дробями.

В создании исчислений обыкновенных и десятичных дробей в дальнейшем проявились два различных направления в развитии математики. Первое направление – аналитическое – связано с десятичными дробями, метрологическое происхождение которых в древнекитайской математики находит объяснение в процедуре деления, а также извлечения корней. Второе алгебраическое – связано с обыкновенными дробями и теоретико-числовыми проблемами.

Были хорошо известны среднее арифметическое двух или нескольких чисел, свойства арифметической и геометрической прогрессии, учение о чётных и нечётных, а также о числовых «другой природы». Арифметика остатков, терема Пифагора, конечные числовые последовательности с первыми и вторыми разностями, магические квадраты с их трансформациями и т.д. – всё это свидетельствует об огромной практике в решении теоретико-числовых задач.

Что касается общей модели древней математики, то следует отметить её «линейность» как основу многих методов.

Список литературы

    Березкина Э.И. Математика древнего Китая/ «Наука», М, 1980 г (с.48-50);

    Математический энциклопедический словарь/ «Большая Российская Энциклопедия», М, 1995 г (с. 16 – 17);

    Стройк Д.Я Краткий очерк истории математики/ издание третье/ «Наука», М, 1978 г.