Интегралы. Функции переменных
Вариант 2
Вычислить интегралы
Преобразуем подынтегральное выражения с целью его непосредственного интегрирования:
Найдем А и В:
Отсюда видно что А и В являются решением системы:
Решим эту систему и найдем А и В:
Итак, A=3/5, B=7/5, зная эти коэффициенты, вычисляем интеграл.
с помощью замены переменных
Введем
и возьмем соответствующий неопределенный
интеграл:
Возвращаемся к x:
Теперь вычисляем определенный интеграл:
Итак,
3.
методом интегрирования
по частям
Итак,
II. Функции многих переменных
1. Найти частные производные 1-го порядка
2. Исследовать на экстремум функцию
Найдем частные производные
Найдем все стационарные
точки функции, точки в которых должны
выполняться условия:
,
Это равносильно следующему:
Вторая система не имеет вещественного корня
t= 0 t=1
y=1 y=-1
x=1
M0(0;0) и M1(1;1) – стационарные точки данной функции.
Теперь определим характер этих стационарных точек.
Найдем частные производные второго порядка этой функции.
В точке M0(0;0):
Так как
<0,
то экстремума в точке M0(0;0)
нет.
В точке M1(1;1):
Так как
>0,A>0,C>0
то точка M1(1;1)
это точка экстремума,
Причем этот экстремум-минимум.
III. Решить дифференциальные уравнения.
1. Решить уравнение с разделяющимися переменными
Интегрируем правую и левую части уравнения:
После некоторых преобразований выражаем решение уравнения:
2. Решить линейное уравнение 1-го порядка
Ищем решение уравнения
в виде произведения двух функций:
При этом:
После подстановки в исходное уравнение имеем:
Чтобы коэффициент при u обратился в 0, в качестве v выбираем функцию удовлетворяющую уравнению:
Найдем функцию u, которая должна удовлетворять уравнению:
:
Решение запишется в виде:
3
Это неоднородное линейное дифференциальное уравнение второго порядка. Его решение ищем в виде:
,
где
- общее решение соответствующего
однородного уравнения,
- частное решение.
Найдем
Решим однородное дифференциальное уравнение
Характеристическое уравнение для него:
Это квадратное уравнение
d=36-100=-64 – дискриминант отрицательный, корни комплексные:
k1=3-4i ; k2=3+4i
Общее решение, следовательно, имеет вид:
,
где
- константы.
Ищем частное решение. Функция свободного члена имеет вид:
,
где a=2,b=3,k=1,p=-6,q=25
При этом
,
следовательно, частное решение ищем в
виде:
Находим его производные первого и второго порядка и подставляем в уравнение:
Для нахождения коэффициентов А и В решим систему:
A=0,07, B=0,16
Таким образом, окончательное решение уравнения имеет вид:
IV. Ряды
Исследовать на сходимость ряд с положительными членами
Рассмотрим ряд:
Это степенной ряд с основанием меньшим 1, а он заведомо сходится.
Теперь сравним члены ряда
с членами ряда
при n>4
, значит ряд
также сходится.
Исследовать на абсолютную и условную сходимость ряд:
Исследуем на абсолютную сходимость (сходимость ряда, состоящего из модулей членов знакопеременного ряда) значит необходимый признак сходимости выполняется.
,
Сравним член этого ряда с членом заведомо расходящегося гармонического ряда:
,
следовательно наш ряд расходится
абсолютно.
Исследуем ряд на условную сходимость:
Так как условия признака Лейбница выполнены
данный ряд сходится условно.
3. Найти область сходимости функционального ряда
,
перепишем его в виде:
Член данного ряда представляет собой член степенного ряда, помноженный на член гармонического ряда.
Для расходящегося
гармонического ряда выполняется однако
основной признак сходимости (его член
стремится к нулю), так что сходимость
функционального ряда
определяется сходимостью степенного
ряда:
,
причем при любом x
это будет знакопостоянный ряд.
Cтепенной же ряд сходится когда его член по модулю <1:
Решаем это модульное неравенство и
находим область сходимости функционального
ряда
:
Итак, область сходимости функционального
ряда
: