Доказательство теоремы Ферма для n=3
Доказательство великой теоремы Ферма для показателя степени n=3
Великая теорема Ферма формулируется следующим образом: диофантово уравнение:
Аn+ Вn = Сn (1)
где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.
Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:
Аn = Сn - Вn (2)
Рассмотрим частное решение уравнения (2) при показателе степени n=3. В этом случае уравнение (2) запишется следующим образом:
A3 = C3 - B3 = (C-B) ∙ (C2 + C·B +B2) (3)
Обозначим: C - B = K (4)
Отсюда: C=B+K; B=C-K (5)
Из уравнений (3), (4) и (5) имеем:
A3 = K [C2+ C∙ (C-K) + (C-K) 2] =3K·C2 - 3K2 ∙C +K3 (6)
Отсюда:
3K·C2 - 3K2 ∙C - (A3 - K3) = 0 (7)
Уравнение (7) рассматриваем как квадратное параметрическое с параметрами А и К и переменной величиной С. Решая его, получим:
C = (8)
Число C будет целым только при условии, если:
= 3N∙K2 (9)
Отсюда: 12K∙A3 - 3K4 = 9N2 ·K4
A = K (10)
K = A (11)
Из анализа формулы (10) следует, что для того чтобы число A могло быть целым числом, число N должно быть нечетным числом.
Рассмотрим решение уравнения (10) на числовых примерах.
N =1; A=K
N =3; A = (1,9129…) · K
N =5; A = (2,6684…) ∙ K
Рассмотрим решение уравнения (11) на числовых примерах.
1. N =1; K=A
N =3; K = (0,5227…) · A
N =5; A = (0,3747…) ∙ A
Из приведенных примеров следует, что только при N =1 числа K и A являются целыми числами, при этом K = A. В этом случае из уравнения (8) следует:
C=K=A
А из уравнения (5) следует: B=0.
Следовательно, только при C=K=A и при B=0 уравнение (2) имеет решение в целых числах. Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при показателе степени n=3.