Ветвящиеся циклические процессы

Содержание:

Введение 3

Теория 4

Практика 10

Выводы 12

Список использованной литературы 13

Введение

Случайные процессы в реальной финансово–экономической практике редко бывают марковскими, поскольку на протекание процесса в будущем влияет не только его состояние в текущий момент времени, но и то, как он протекал в прошлом.

Но, тем не менее, использование приближённых моделей на практике позволяет достаточно точно (с определённой точностью) оценивать различные системы. В данной теоретико-практической работе будет рассмотрена теория о ветвящихся циклических процессах, с помощью которой можно предсказывать состояние исследуемой системы в будущем через достаточно длительный промежуток времени.

В процессе данной работы я рассмотрю основные положения теории о ветвящихся циклических процессах; приведу пример задачи, с которой можно столкнуться в реальной жизни, и её решение с помощью рассматриваемой теории.

Теория

Введём основные понятия, с которыми нам предстоит работать. Под системой S будем понимать всякое целостное множество взаимосвязанных элементов, которое нельзя расчленить на независимые подмножества. Если эта система с течением времени t изменяет свои состояния S(t) (всего возможных состояний системы n штук) случайным образом, при чём так, что для каждого момента времени вероятность состояния S(t) системы S в будущем () зависит только от её состояния S() в настоящем и не зависит от того, как и сколько времени развивался этот процесс в прошлом (), то говорят, что в системе S протекает марковский случайный процесс.

Процесс является процессом с непрерывным временем, если в нём система может менять свои состояния в любой случайный момент времени.

Плотностью вероятности перехода системы S из состояния в состояние в момент времени t называется величина

Если же плотности вероятностей переходов не зависят от времени t, то такой процесс называется однородным.

Марковский процесс, протекающий в системе S с n состояниями, называется ветвящимся циклическим процессом, если его граф состояний имеет вид:

Теорема:

Пусть в системе S протекает ветвящийся циклический однородный марковский процесс с непрерывным временем, причём возможный непосредственный переход из состояния разветвляется на переходы в состояния соответственно с вероятностями , сумма которых равна 1:

(1)

Переходы из состояний сходятся в состояние .

Тогда финальные вероятности1 соответствующих состояний системы S определяются следующими формулами:

где .

Доказательство:

Т.к. ветвящийся циклический процесс можно представить в виде обычного циклического процесса и собственно разветвления, то, учитывая свойство циклического процесса, что плотность вероятности перехода из неразветвлённого состояния в соседнее справа равна обратной величине среднего времени пребывания (подряд) системы S в состоянии , имеем

(2)

Интенсивность потока уходов из состояния равна , где среднее время пребывания (подряд) системы S в состоянии . Тогда будет представлять собой долю величины , определенную вероятностью q>m>,>m>>+>>k>:

(3)

Составим по графу (на рис. 1) систему линейных алгебраических уравнений, неизвестными в которой являются финальные вероятности :

(4)

Подставляя 2 и 3 в 4, получим:

(5)

Составим матрицу коэффициентов системы (5) с учетом того, что коэффициент при р>т> в т-м уравнении в силу (1) равен

,

Столбцы Р

1

2

3

m-1

m

m+1

m+2

m+i

m+i+1

m+i+2

n-1

n

Строки


Проведем следующие элементарные преобразования над строками этой матрицы:

2-ю строку прибавим к 3-й строке;

полученную 3-ю строку прибавим к 4-й строке;

полученную 4-ю строку прибавим к 5-й строке;

и так далее;

полученную (m-1)-ю строку прибавим к m-й строке;

полученную mстроку умножим последовательно на и прибавим соответственно к (m+1)-й, (m+2)-й,..., (m+i)-й строке;

сумму полученных (m+1)-й, (m+2)-й,..., (m+i)-й строк прибавим к (m+i+1)-й строке, учитывая равенство (1);

полученную (m+i+1)-ю строку прибавим к (m+i+2)-й строке;

полученную (m+i+2) строку прибавим к (m+i+3)-й строке;

и так далее;

полученную (п-1)-ю строку прибавим к п-й строке.

В результате этих преобразований получим матрицу следующего вида:

Первая и последняя строки этой матрицы пропорциональны, а потому одну из них, например первую, можно отбросить.

Полученная после отбрасывания 1-й строки матрица порождает следующую систему линейных уравнений:

Отсюда финальные вероятности можно выразить через финальную вероятность :

(6)

Подставим выражения (6) в нормировочное условие и найдем :

.

Откуда или , где . Подставляя найденное выражение в (6) получаем доказываемые формулы.

Практика

В наше время любой банк имеет банкоматы в различных точках города для удобства своих клиентов. Для планирования будущих расходов на содержание банкомата применим теорию о ветвящихся циклических процессах.

В качестве системы S возьмём банкомат. Банкомат может находиться в следующих состояниях:

S>1> – исправен, работает;

S>2> – неисправен, ведётся поиск неисправности;

S>3> – неисправность обнаружена и оказалась незначительной, ремонтируется местными средствами;

S>4> – неисправность обнаружена и оказалась серьёзной, ремонт ведётся приглашённым со стороны специалистом;

S>5> – ремонт законен, ведётся подготовка к включению банкомата.

Процесс, протекающий в системе – однородный, марковский, т.к. все потоки событий, под воздействием которых происходят переходы банкомата из состояния в состояние, - простейшие.

Среднее время исправной работы банкомата2 равно месяц; среднее время поиска неисправности банкомата равно часа; среднее время ремонта местными средствами равно часа; среднее время ремонта банкомата специалистом равно дня; среднее время подготовки банкомата к работе час.

Вероятность того, что неисправность оказалась незначительной и может быть устранена местными средствами р=0,8. Вероятность же того, что неисправность серьёзная и без специалиста не обойтись 1-р=0,2.

Если банкомат работает исправно, то стоимость его обслуживания составляет 100 рублей в день3; один час работы специалиста по устранению неисправностей составляет 200 рублей в час. В остальных состояниях стоимость содержания банкомата равна величине амортизации и составляет 7 рублей в день.

Спрогнозируем средний расход на следующий год, идущий на содержание банкомата.

Решение: граф состояний системы будет иметь вид:

Приведём данные в условии задачи к одной единице, например, сутки:

Как уже было сказано выше процесс, протекающий в системе, - однородный, марковский и к тому же он является ветвящимся циклическим с непрерывным временем, тогда мы можем воспользоваться полученными выше формулами:

Тогда ,

,

,

,

Теперь определим общий расход на содержание банкомата: рублей за сутки, тогда за год эта сумма составит приближённо 70 100 рублей.

Выводы

Таким образом, мы на практике убедились, что теория о ветвящихся циклических процессах, возможно и не обладает возможностями для широкого применения, но, тем не менее, является простым и действенным инструментом при планировании различных экономических процессов.

Но надо учитывать, что это всего лишь маленькое ответвление теории о марковских процессах, на которой, в свою очередь, базируются многие другие теории, в частности теория о массовом обслуживании в экономической сфере.

Список использованной литературы

  1. Лабскер Л.Г. Вероятностное моделирование в финансово – экономической области – М.: Альпина Паблишер, 2002. – 224 с.

  2. http://www.gazeta.ru/2006/04/13/oa_195828.shtml

  3. Журнал вычислительной математики и математической физики Т.46.№03 – 2006

  4. Свешников А.А. Прикладные методы теории марковских процессов: Учебное пособие. М.: Издательство «Лань», 2007. – 192 с.

1 Вероятности состояний системы в финальном стационарном режиме, при котором они уже не зависят ни от времени, ни от начального распределения вероятностей, называются финальными вероятностями

2 подряд

3 включается потребляемое банкоматом электричество и работа с наличностью банкомата