Иррациональные уравнения и неравенства (работа 2)
Иррациональные уравнения и неравенства
Колегаева Елена Михайловна, доцент кафедры математических методов и информационных технологий ДВАГС
I. Преобразование иррациональных выражений.
Иррациональным называется выражение, содержащее корни n-ой степени.
1) Одно из типичных преобразований иррациональных выражений – избавление от иррациональности в знаменателе.
а) Если в знаменателе стоит выражение вида , то необходимо числитель и знаменатель умножить на сопряженное к нему выражение . В этом случае применяется формула .
б) Если в знаменателе стоит выражение (или ), то числитель и знаменатель умножается, соответственно, на (или ). В этом случае применяются формулы
,
.
Пример 1. Избавиться от иррациональности в знаменателе:
а) ; б) ; в) ; г) ; д) ; е) .
Решение:
а) ;
б) ;
в) ;
г) ;
д) ;
е)
.
Отметим еще одно свойство:
которое часто применяется в преобразованиях.
Пример 2. Упростить выражение:
а) ; б) ; в) .
Решение:
а) , т.к. .
б) , т.к. .
в)
.
Выясним, при каких n выражения под знаком модуля меняют знак: n=-1, n=1, n=0.
1) Если n<-1, то
2) Если -1£n<0, то
3) Если 0<n<1, то
4) Если n³1, то
Ответ:
II. Иррациональные уравнения.
Рассмотрим уравнение вида .
Основной метод решения – возведение обеих частей уравнения в степень n. При этом, если n – четное, то могут возникнуть посторонние корни. Поэтому в уравнениях необходимо делать проверку.
Если уравнение содержит два и больше корней, то один из корней «уединяется», то есть уравнение приводится к виду .
Еще один способ решения – введение вспомогательной переменной.
Пример 3. Решить уравнения:
а) ;
б) ;
в) ;
г) .
Решение:
а) Û ;
Проверка.
Þ х=-4 – посторонний корень,
– верно Þ х=2 – корень.
Ответ: х=2.
б)
Проверка.
– это выражение не существует, т.е.
– посторонний корень,
– верно Þ – корень.
Ответ: .
в)
Введем вспомогательную переменную Þ x2=t2–13
t2-13-2t=22; t2-2t-35=0,
t1=7; t2=-5.
Сделаем обратную замену:
Û х2+13=49 Û х2=36 Þ х=±6,
– не имеет решений.
Ответ: х=±6.
г)
Сделаем замену переменной. Положим . Тогда уравнение примет вид:
Û Û
Þ Û Û Û .
Проверка показывает, что – корень.
Ответ: .
III. Решение иррациональных неравенств.
При решении этих неравенств следует помнить, что в четную степень можно возводить неравенства с неотрицательными членами.
Поэтому неравенство эквивалентно системам
или
Неравенство равносильно системе
Пример 4. Решить неравенства:
а) б)
в) г)
Решение.
а) Û Û
Решим третье неравенство системы методом интервалов:
x2-5x-14>0
x2-5x-14=0
(x-7)(x+2)>0
Найдем пересечение решений трех неравенств:
Ответ: -18£x<-2.
б)
если х-1£0, то неравенство верно, то есть х£1;
если x-1>0 и так как x2+1>0, возводим обе части в квадрат. Имеем:
Û Û x>1.
Объединяем два решения, получим х – любое.
Ответ: х – любое.
в)
Û Û Û
Û Û
Ответ: х³1.
г)
или
Û х³3
Ответ: .
Задачи для самостоятельного решения
Уважаемые ребята, ниже приводятся задания для самостоятельного решения, которые следует выполнить, оформить отдельно от заданий по другим предметам и выслать в адрес Хабаровской краевой заочной физико-математической школы.
Наш адрес: 680000, г. Хабаровск, ул. Дзержинского, 48, ХКЦТТ ( ХКЗФМШ).
М11.9.1. Упростить:
1) 2) 3)
4) , если , m>0, 0<n<1.
М11.9.2. Решить уравнения
;
;
;
.
М11.9.3. Решить неравенства:
;
;
;
.
Список литературы
Для подготовки данной применялись материалы сети Интернет из общего доступа