Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области

Прусаков Д. В.

«Первая краевая задача для уравнения теплопроводности в нецилиндрической неограниченной области» 1998- 99 уч. г. TYPE=RANDOM FORMAT=PAGE>13

Введение 3

1.Постановка задачи 3

2. Оценочный анализ решения задачи. 4

2.1. Оценка решения сверху. 4

2.2. Оценка решения в виде интеграла 5

2.3. Выбор интервала ( ) и оценка погрешности 8

3. Формулировка результата в виде теоремы 10

4. Примеры 11

Заключение 12

СПИСОК ЛИТЕРАТУРЫ 13

Введение

В ряде случаев оказывается невозможным или неприемлемым получение аналитического решения поставленной задачи. Использование основных теорем и положений анализа позволяет получить качественную картину поведения функции решения в заданной области, оценить скорость сходимости решения. Такой подход широко реализуется в областях техники, где получение результата необходимо с заданной точностью.

1.Постановка задачи

В дипломной работе рассматривается задача:

(З)

0.

t

x

Требуется привести пример оценки решения задачи (З) в области , и исследовать полученную оценку при

2. Оценочный анализ решения задачи.

Оценка решения задачи (З) основывается на принципе максимума для уравнения теплопроводности : «Всякое решение уравнения в прямоугольнике , непрерывное вплоть до границы, принимает свои наибольшее и наименьшее значения на нижних или на боковых его границах» [2].

2.1. Оценка решения сверху.

В области t=t , x= рассмотрим решение задачи :

, V(0,x) = ( x ), x , (1)

это решение имеет вид [1]:

v (t, x) = . (2)

Зафиксируем некоторое и перейдем к исходной системе координат, тогда (2) в системе t=t, x= будет выглядеть так:

V(t, x) = (2’)

Из принципа максимума [2] заключаем, что:

U( t, x ) V( t, x ). (3)

Таким образом задача сводится к оценке интеграла (2).

2.2. Оценка решения в виде интеграла

Разобьем интервал < x на две части и , тогда интеграл (2) запишется в виде:

V( t, x ) = . (*)

Исследуем знак подинтегрального выражения, принимая во внимание, то что :

; (а)

;

;

где .

После проведенного исследования видно, что

Использовав известное разложение ,

где Z 0, , заменим экспоненты во втором интеграле рядами:

(а) ;

(б) .

В результате получим :

Здесь:

, , (4.1)

, . (4.2)

Запишем неравенство (3) в виде, принимая во внимание только одно слагаемое суммы ряда:

m=1,

U(t, x) . (5)

Выше приведенная оценка не отражает качественной картины и может быть использована при дальнейших исследованиях задач подобного вида. ( т .к .фиксированно)

Рассмотрим другую возможность оценки неравенства (3).

пусть

(т.е. финитна), в соответствии с принципом максимума:

, (3)

при

где W- решение краевой задачи (З) с начальными условиями:

Аналогично, как и выше

здесь:

Таким образом,

(используем разложение в ряд Тейлора)

В итоге,

(5.1)

Рассмотрим два случая:

а) Пусть

,

тогда в правой части неравенства (5.1) третье и четвертое (3,4) слагаемые стремятся к нулю быстрее любой степени ,

поэтому (5.1) можно переписать как:

(5.2)

б) Пусть тогда:

где

В результате получаем:

(5.3)

2.3. Выбор интервала ( ) и оценка погрешности

Зададим произвольно некоторую константу >0, потребовав чтобы в (5)

<.

при .

Неравенство (5) можно только усилить, если

< (6)

Рассмотрим общий вид :

; (7)

, (7.1)

b=x ( k=1 ) , b=2(k=2) оценка (7.1) эквивалентна системе неравенств:

,

откуда:

. (8)

Т. к. в работе исследуется поведение неравенства (3) при то принимаем что для некоторого :

. (9)

3. Формулировка результата в виде теоремы

Обобщая результаты всей работы в целом можно сформулировать следующие теоремы:

1. Пусть для уравнения теплопроводности имеет место задача

(З)

- гладкая, непрерывно - дифференцируемая функция на ,а функция ограничена на R : .

Тогда для любого сколь малого числа можно указать число

,

такое что имеет место следующая оценка «сверху» решения задачи (З):

Раскрыв квадратные скобки, получим:

.

    Пусть в имеет место задача (З), - монотонная, неограниченная, возрастающая функция, тогда:

    если , то

2) если то

Замечанние:видно, что оценку полученную в теореме 2 можно получить и при более слабых ограничениях

4. Примеры

Пусть ,

    .

Заключение

В дипломной работе произведена оценка решения «сверху» для уравнения теплопроводности с движущей границей по заданному закону. Аналогично, можно получить оценку решения «снизу». Для этого нужно рассмотреть ступенчатую область, в которой для каждой ступеньки решение может быть получено согласно 2.1 (2) . Число таких ступенчатых областей необходимо выбрать таким образом, чтобы оценка полученная снизу была сравнима с полученной выше оценкой.

СПИСОК ЛИТЕРАТУРЫ

    А. Н. Тихонов, А. А. Самарский, Уравнения математической физики. Изд. «Наука», М. 1966 (с. 230 -233);

    С. К. Годунов, Уравнения математической физики. Изд. «Наука», М. 1973 . 33-34);

    Л. Д. Кудрявцев, Краткий курс математического анализа. Изд. «Наука», М. 1989.