Матричный анализ

Курс лекций по дисциплине

«Матричный анализ»

для студентов II курса

математического факультета специальности

«Экономическая кибернетика»

(лектор Дмитрук Мария Александровна)

Глава 3. Функции от матриц.

    Определение функции.

Df. Пусть – функция скалярного аргумента. Требуется определить, что понимать под f(A), т.е. нужно распространить функцию f(x) на матричное значение аргумента.

Решение этой задачи известно, когда f(x) – многочлен: , тогда .

Определение f(A) в общем случае.

Пусть m(x) – минимальный многочлен А и он имеет такое каноническое разложение , , – собственные значения А. Пусть многочлены g(x) и h(x) принимают одинаковые значения.

Пусть g(A)=h(A) (1), тогда многочлен d(x)=g(x)-h(x) – аннулирующий многочлен для А, так как d(A)=0, следовательно, d(x) делится на линейный многочлен, т.е. d(x)=m(x)*q(x) (2).

Тогда , т.е. (3), , , .

Условимся m чисел для f(x) таких называть значениями функции f(x) на спектре матрицы А, а множество этих значений будем обозначать .

Если множество f(Sp A) определено для f(x), то функция определена на спектре матрицы А.

Из (3) следует, что многочлены h(x) и g(x) имеют одинаковые значения на спектре матрицы А.

Наши рассуждения обратимы, т.е. из (3)  (3)  (1). Таким образом, если задана матрица А, то значение многочлена f(x) вполне определяется значениями этого многочлена на спектре матрицы А, т.е. все многочлены g>i>(x), принимающие одинаковые значения на спектре матрицы имеют одинаковые матричные значения g>i>(A). Потребуем, чтобы определение значения f(A) в общем случае подчинялось такому же принципу.

Значения функции f(x) на спектре матрицы А должны полносильно определить f(A), т.е. функции, имеющие одни и те же значения на спектре должны иметь одно и то же матричное значение f(A). Очевидно, что для определения f(A) в общем случае, достаточно найти многочлен g(x), который бы принимал те же значения на спектре А, что и функция f(A)=g(A).

Df. Если f(x) определена на спектре матрицы А, то f(A)=g(A), где g(A) – многочлен, принимающий на спектре те же значения, что и f(A),

Df. Значением функции от матрицы А назовем значение многочлена от этой матрицы при .

Среди многочленов из С[x], принимающих одинаковые значения на спектре матрицы А, что и f(x), степени не выше (m-1), принимающий одинаковые значения на спектре А, что и f(x) – это остаток от деления любого многочлена g(x), имеющего те же значения на спектре матрицы А, что и f(x), на минимальный многочлен m(x)=g(x)=m(x)*g(x)+r(x).

Этот многочлен r(x) называют интерполяционным многочленом Лагранжа-Сильвестра для функции f(x) на спектре матрицы А.

Замечание. Если минимальный многочлен m(x) матрицы А не имеет кратных корней, т.е. , то значение функции на спектре .

Пример:

Найти r(x) для произвольной f(x), если матрица

. Построим f(H>1>). Найдем минимальный многочлен H>1> – последний инвариантный множитель [xE-H>1>]:

, d>n-1>=x2; d>n-1>=1;

m>x>=f>n>(x)=d>n>(x)/d>n-1>(x)=xn 0 – n –кратный корень m(x), т.е. n-кратные собственные значения H>1>.

, r(0)=f(0), r’(0)=f’(0),…,r(n-1)(0)=f(n-1)(0) .

    Свойства функций от матриц.

Свойство № 1. Если матрица имеет собственные значения (среди них могут быть и кратные), а , то собственными значениями матрицы f(A) являются собственные значения многочлена f(x): .

Доказательство:

Пусть характеристический многочлен матрицы А имеет вид:

, , . Посчитаем . Перейдем от равенства к определителям:

Сделаем замену в равенстве:

(*)

Равенство (*) справедливо для любого множества f(x), поэтому заменим многочлен f(x) на , получим:

.

Слева мы получили характеристический многочлен для матрицы f(A), разложенный справа на линейные множители, откуда следует, что – собственные значения матрицы f(A).

ЧТД.

Свойство № 2. Пусть матрица и – собственные значения матрицы А, f(x) – произвольная функция, определенная на спектре матрицы А, тогда собственные значения матрицы f(A) равны .

Доказательство:

Т.к. функция f(x) определена на спектре матрицы А, то существует интерполяционный многочлен матрицы r(x) такой, что , а тогда f(A)=r(A), а у матрицы r(A) собственными значениями по свойству № 1 будут которым соответственно равны .

ЧТД.

Свойство № 3. Если А и В подобные матрицы, , т.е. , и f(x) – произвольная функция, определенная на спектре матрицы А, тогда

Доказательство:

Т.к. А и В подобны, то их характеристические многочлены одинаковы  одинаковы и их собственные значения, поэтому значение f(x) на спектре матрицы А совпадает со значение функции f(x) на спектре матрицы В, при чем существует интерполяционный многочлен r(x) такой, что f(A)=r(A), , .

ЧТД.

Свойство № 4. Если А – блочно-диагональная матрица , то

Следствие: Если , то , где f(x) – функция, определенная на спектре матрицы А.

    Интерполяционный многочлен Лагранжа-Сильвестра.

Случай № 1.

Пусть дана . Рассмотрим первый случай: характеристический многочлен имеет ровно n корней, среди которых нет кратных, т.е. все собственные значения матрицы А различны, т.е. , Sp A – простой. В этом случае построим базисные многочлены l>k>(x):

.

Пусть f(x) – функция, определенная на спектре матрицы А и значениями этой функции на спектре будут . Надо построить .

Построим:

.

Обратим внимание, что .

Пример: Построить интерполяционный многочлен Лагранжа-Сильвестра для матрицы .

Построим базисные многочлены:

Тогда для функции f(x), определенной на спектре матрицы А, мы получим:

.

Возьмем , тогда интерполяционный многочлен

.

Случай № 2.

Характеристический многочлен матрицы А имеет кратные корни, но минимальный многочлен этой матрицы является делителем характеристического многочлена и имеет только простые корни, т.е. . В этом случае интерполяционный многочлен строится так же как и в предыдущем случае.

Случай № 3.

Рассмотрим общий случай. Пусть минимальный многочлен имеет вид:

,

где m>1>+m>2>+…+m>s>=m, deg r(x)<m.

Составим дробно-рациональную функцию:

и разложим ее на простейшие дроби.

Обозначим: . Умножим (*) на и получим

где – некоторая функция, не обращающаяся в бесконечность при .

Если в (**) положить , получим:

Для того, чтобы найти a>k3> надо (**) продифференцировать дважды и т.д. Таким образом, коэффициент a>ki> определяется однозначно.

После нахождения всех коэффициентов вернемся к (*), умножим на m(x) и получим интерполяционный многочлен r(x), т.е.

.

Пример: Найти f(A), если , где t – некоторый параметр,

.

Найдем минимальный многочлен матрицы А:

.

Проверим, определена ли функция на спектре матрицы А

Умножим (*) на (х-3)

при х=3

Умножим (*) на (х-5)

.

Таким образом, - интерполяционный многочлен.

Пример 2.

Если , то доказать, что

Найдем минимальный многочлен матрицы А:

- характеристический многочлен.

d>2>(x)=1, тогда минимальный многочлен

.

Рассмотрим f(x)=sin x на спектре матрицы:

функция является определенной на спектре.

Умножим (*) на

.

Умножим (*) на :

.

Вычислим , взяв производную (**):

. Полагая ,

, т.е. .

Итак, ,

,

,

.

ЧТД.

Пример 3.

Пусть f(x) определена на спектре матрицы, минимальный многочлен которой имеет вид . Найти интерполяционный многочлен r(x) для функции f(x).

Решение: По условию f(x) определена на спектре матрицы А f(1), f’(1), f(2), f ‘(2), f ‘’ (2) определены.

.

.

Используем метод неопределенных коэффициентов:

Если f(x)=ln x

f(1)=0 f’(1)=1

f(2)=ln 2 f’(2)=0.5 f’’(2)=-0.25

4. Простые матрицы.

Пусть матрица , так как С алгебраически замкнутое поле, то характеристический многочлен , где , k>i> – алгебраическая кратность корня .

Обозначим множество векторов удовлетворяющих собственному значению - подпространство, , где r – ранг матрицы .

Теорема. Если квадратная матрица А имеет собственное значение , а матрица имеет , то имеет кратность .

DF. Размерность называется геометрической кратностью собственного значения .

В свете этого определения теорема переформулируется следующим образом:

Теорема. Алгебраическая кратность собственного значения не меньше его геометрической кратности.

DF. Матрица называется простой, если аглебраическая кратность каждого ее собственного значения совпадает с его геометрической кратностью.

Из линейной алгебры следует, что матрица простая тогда и только тогда, когда .

Если матрица А простая, тогда существует n линейно независимых собственных векторов x>1>, x>2>, …,x>n> таких, что , для . Запишем это равенство в матричном виде:

, т.е. А – простая тогда и только тогда, когда и .

Замечание. Обратим внимание на то, что собственные значения А и А’ совпадают. Действительно, собственные значения для А’ это значения . Таким образом характеристические многочлены матриц совпадают. Размерность , тогда . Поэтому, если - собственное значение матрицы А, то и является собственным значением матрицы А’, т.е. существует , что (*) или . Транспонируем (*) и получим (транспонируем это равенство). В этом случае называют левым собственным вектором матрицы А. Соответственно, - называют правым собственным подпространством, - называют левым собственным подпространством.

Рассмотрим следующую конструкцию: если матрица А простая, то существует n линейно независимых собственных векторов x>1>, x>2>, …, x>n> и существует n линейно независимых собственных векторов y>1>, y>2>,…,y>n>, где x>1>, x>2>, …, x>n >такие, что , (1); y>1>, y>2>,…,y>n >такие, что (2), .

Запишем равенство (1) в виде (3)  что, если А – простая, то существуют матрицы X и Y, что или (**).

DF. Множества векторов x>1>, x>2>, …, x>n >и y>1>, y>2>,…,y>n> удовлетворяющие условию , т.е. называются квазиортогональными.

Учитывая равенство (**) и определение делаем вывод: множества левых и правых собственных векторов простой матрицы А квазиортогональны и .

Очень важной для матриц является следующая теорема:

СПЕКТРАЛЬНАЯ ТЕОРЕМА. Если А – простая матрица порядка n над полем С и p(x) многочлен из кольца C[x], и x>1>, x>2>, …, x>n >и y>1>, y>2>,…,y>n> – множества правых и левых собственных векторов матрицы А, то , а сопутствующая матрица , где .

Следствие. Сопутствующие матрицы обладают следующими свойства:

Пример. Показать, что матрица простая. Найти сопутствующие матрицы для матрицы А и использовать их для А20, p(x)=x20.

Решение:

существуют 2 линейно независимые правые и левые системы собственных векторов.

Найдем правые собственные векторы:

Найдем левые собственные векторы:

Найдем сопутствующие матрицы:

.

5.Спектральное разложение функции f(A).

Спектральное разложение для f(A) имеет важное значение и очевидно тесно примыкает к спектральной теореме для простых матриц.

Пусть дана матрица и пусть , .

Теорема. Если , а функция f(x) определена на спектре матрицы А и - значение j-й производной от f(x) в собственном значении , где , , то существуют такие независимые от f(x) матрицы , что (1) , при чем коммутирует с матрицей А и образуют линейно независимую систему в пространстве

Доказательство: заметим, что и , где - базисные многочлены, принимающие одинаковые значения на спектре матрицы А, (3). Сравнивая (1) и (2) и учитывая (3) получим, что . Матрицы называются компонентами матрицы А или компонентными матрицами.

ЧТД.

Опишем следующие свойств компонентных матриц, которые в некоторой степени обобщают свойства сопровождающих матриц.

Теорема. Компонентные матрицы обладают следующими свойствами:

    .

Замечание. Для того, чтобы найти компонентные матрицы для f(x) определенной на спектре матрицы А необходимо и достаточно знать базисные многочлены, входящие в интерполяционный многочлен, однако нахождение интерполяционного многочлена f(x) связано с некоторыми трудностями, а поэтому будем вычислять компонентные матрицы подбирая соответствующим образом системы функций.

Пример: Найти компоненты для матрицы .

.

Пусть f(x) определена на спектре А, тогда согласно спектральной теореме .

    f(x)=1

E=1Z>11>+0Z>12>+1Z>21>=Z>11>+Z>21>

    f(x)=x-4

A-4E=0Z>11>+1Z>12+>(-2>)>Z>21>=Z>12>-2Z>21>

    f(x)=(x-4)2

(A-4E)2=4Z>21>

.

Таким образом, для любой функции f(x), определенное на спектре матрицы А

.

Пример 2.

Найти компоненты для матрицы

.

Найдем минимальный многочлен матрицы А.

    f(x)=1

E=Z>11>+Z>21>+Z>31>

    f(x)=x+1

(A+E)=2Z>21>+Z>31>+Z>12>

    f(x)=(x+1)2

(A+E)2=4Z>21>+Z>31>

    f(x)=x-1

A-E=-2Z>11>+Z>12>-Z>31>

1. f(x)=1 E=Z>11>+Z>21>+Z>31>

2. f(x)=x+1 A+E=Z>11>Z>22>+2Z>31>

3. f(x)=(x+1)2 (A+E)2=Z>11>+4Z>31>

4. f(x)=x-1 (A-E)=-Z>11>-2Z>21>+Z>22>

Z>31>=A

-Z>22>=(A+E)2-E-3A

Z>12>=Z>22>

Z>11>=(E-A)-Z>22>

6.Определенные матрицы.

Эрмитовы и квадратичные матрицы.

Пусть А – эрмитова матрица (А*=А).

Рассмотрим функцию h(x) – действительная функция комплексного аргумента.

Рассмотрим:

DF. Функция , где А – эрмитова матрица, называется эрмитовой формой от n переменных x>1>, …, x>n>, где А – матрица эрмитовой формы.

Очевидно, что если А – действительная симметрическая матрица, то в этом случае получаем квадратичную форму .

Для каждой эрмитовой (квадратичной) формы инвариантами являются: ранг (число не нулевых коэффициентов в квадратичной форме нормального вида совпадающих с рангом матрицы А), p (индекс) – число положительных коэффициентов в квадратичной форме нормального вида, оно совпадает с числом положительных собственных значений, сигнатура. Эти числа r, p, гр-r не зависят от тех преобразований, которые совершаются над данными формами.

В дальнейшем ограничимся рассмотрением только квадратичных форм. Нас интересуют 2 семейства матриц.

DF. Действительная симметрическая матрица А называется положительно определенной, если для .

DF. Действительная симметрическая матрица А называется неотрицательно определенной, если для .

Оба типа матриц относятся к классу определенных матриц. Заметим, что положительно определенная матрица невырожденная, т.е. если предположить, что она вырожденная, то , , что противоречит условию.

Теорема № 1. Действительная симметрическая матрица n-го порядка будет определенной ранга тогда и только тогда , когда она имеет r положительных собственных значений, а остальные (n-r) – собственные значения равны 0.

Теорема № 2. Действительная симметрическая матрица положительна определена тогда и только тогда, когда все ее главные миноры положительны.

Теорема № 3. Действительная симметрическая матрица положительно определена тогда и только тогда, когда все ее главные миноры положительны.

7.Неотрицательные матрицы.

DF. Матрица называется неотрицательной, если каждый ее элемент положителен.

Квадратные матрицы такого типа возникают во множестве задач и это определяющее свойство приводит к сильным результатам об их строении. Теорема Фробениуса-Перона является основным результатом для неотрицательных матриц.

Пусть матрицы . Будем говорить, что , если б в частности A>B, если .

Вспомним матрицу перестановки , т.е. матрицы перестановки обязательно ортогональны. Произведение приводит к перестановке столбцов матрицы А.

DF. При матрица называется приводимой матрицей, если существует такая матрица перестановки Р, что совподает с матрицей , где А>11>, А>12>, А>22> – квадратные матрицы меньшего чем n порядка. Если матрица Р не существует, то матрица А называется неприводимой.

Понятие приводимости имеет значение при решении матричных уравнений , ибо если Ф – приводима, то осуществив замену переменных, которую подсказывают равенства , получаем

, где , .

и решаем матричное уравнение с матрицей более низкого порядка. Затем, и решаем матричное уравнение. Таким образом, если А – приводима, то решение уравнения высокого порядка сводится к решению уравнений более низкого порядка, при чем собственные значения матриц А>11 >и А>22> в своей совокупности составляет множество значений матрицы А.

Интересно, что явление приводимости не связано с величиной матрицы, а зависит лишь от расположения нулевых элементов в матрице.

В связи с этим, используют идею направленного графа матрицы, которую можно взять в качестве характеризации неприводимости матрицы. Наметим первые шаги тоерии и получим вторую характеризацию неприводимости матриц.

DF. Пусть р>1>, р>2>, …, р>n> – n различных точек комплексной плоскости и . Для каждого нулевого элемента матрицы А составим направленную линию от р>i> к р>j> . Получающаяся в результате фигура на комплексной плоскости называется направленным графом матрицы.

Например:

DF. Говорят, что любой направленный граф связен, если для каждой пары точек существует направленный путь .

Легко доказать, что квадратная матрица неприводима тогда и только тогда, когда ее граф является связным.

8.Теорема Фробениуса-Перона.

Очевидно, что если , то для . Более того, мы покажем, что для достаточно больших p .

Лемма № 1. Если матрица неотрицательна и неприводима, то .

Доказательство:

Если взять произвольный вектор и , то . И пусть вектор имеет место, очевидно, что Z имеет по крайней мере столько же нулевых положительных элементов, что и y. В самом деле, если предположить, что Z имеет меньше нулевых компонент, то обозначим , тогда и разбив матрицу А на блоки следующим образом

мы будем иметь .

Учитывая, что , то , тогда получаем, что , что противоречит неприводимости матрицы.

Для следующего вектора повторим рассуждения и т.д. В итоге получим, что для некоторого ненулевого вектора y .

ЧТД.

Для ненулевой неприводимой матрицы А рассмотрим действительную функцию r(x), определенную для ненулевых векторов следующим образом: , (Ax)>i> – i-я координата вектора Ах.

. Из определения следует, что и кроме того, r(x) –такое наименьшее значение , что .

Очевидно, что r(x) инвариантна относительна замены x на , поэтому в дальнейшем можно рассматривать замкнутое множество , такое .

Однако, r(x) может иметь разрывы в точках, где координата x обращается в 0, поэтому рассмотрим множество векторов и обозначим . По лемме № 1 каждый вектор из N будет положительным, а поэтому т.е. для .

Обозначим через наибольшее число, для которого , . спектральный радиус матрицы А. Если Можно показать, что существует вектор y, что .

Замечание. Могут существовать и другие векторы в L для которых r(x) принимает значение r, поэтому любой такой вектор называется экстремальным для матрицы А (Az=rz).

Интерес к числу r объясняется следующим результатом.

Лемма № 2. Если матрица неотрицательна и неприводима, то число является собственным значением матрицы А, кроме того каждый экстремальный вектор для А положителен и является правым собственным вектором для А, отвечающим собственному значению r.

Основным результатом является теорема Фробениуса-Перона для непрерывных матриц.

Теорема Фробениуса-Перона. Если матрица неотрицательна и неприводима, то:

    А имеет положительное собственное значение, равное спектральному радиусу матрицы А;

    существует положительный правый собственный вектор, соответствующий собственному значению r.

    собственное значение имеет алгебраическую кратность равную 1.

Эта теорема была опубликована в 1912 году Фробениусом и явилась обобщением теоремы Перона, которая является следствием.

Теорме Перона (следствие). Положительная квадратная матрица А имеет положительное и действительное собственное значение r, имеющее алгебраическую кратность 1 и превосходит модули всех других собственных значений матрицы А. Этому r соответствует положительный собственный вектор.

Используя теорему Фробениуса-Перона, можно найти максимальное действительное значение матрицы, не используя характеристического многочлена матрицы.