Математическая статистика (работа 1)

1-я контрольная работа

Задача № 1.33

Вычислить центральный момент третьего порядка (>3>) по данным таблицы:

Производитель­ность труда, м/час

80.5 – 81.5

81.5 – 82.5

82.5 – 83.5

83.5 – 84.5

84.5 – 85.5

Число рабочих

7

13

15

11

4

Производитель­ность труда, м/час

X>I>

Число рабочих, m>i>

m>i>x>i>

(x>i>-x>ср>)3

(x>i>-x>ср>)3m>i>

80.5 – 81.5

81

7

567

-6,2295

-43,6065

81.5 – 82.5

82

13

1066

-0,5927

-7,70515

82.5 – 83.5

83

15

1245

0,004096

0,06144

83.5 – 84.5

84

11

924

1,560896

17,16986

84.5 – 85.5

85

4

340

10,0777

40,31078

И
того:

50

4142

6,2304

Ответ: >3>=0,1246

Задача № 2.45

Во время контрольного взвешивания пачек чая установлено, средний вес у n=200 пачек чая равен =26 гр. А S=1гр. В предложение о нормальном распределение определить у какого количества пачек чая ве будет находится в пределах от ( до .

Р(25<x<27)=P=2Ф(1)-1=0,3634

m=n*p=200*0,3634  73

Ответ: n=73

Задача № 3.17

На контрольных испытаниях n=17 было определено =3000 ч . Считая, что срок службы ламп распределен нормально с =21 ч.., определить ширину доверительного интервала для генеральной средней с надежностью =0,98

Ответ: [2988<<3012]

Задача № 3.69

По данным контрольных испытания n=9 ламп были получены оценки =360 и S=26 ч. Считая, что сроки служб ламп распределены нормально определить нижнюю границу доверительного интервала для генеральной средней с надежностью

Ответ: 358

Задача № 3.71

По результатам n=7 измерений средняя высота сальниковой камеры равна =40 мм, а S=1,8 мм. В предложение о нормальном распределение определить вероятность того, что генеральная средняя будет внутри интервала .

Ответ: P=0,516

Задача № 3.120


По результатам измерений длины
n=76 плунжеров было получено =50 мм и S=7 мм. Определить с надежностью 0,85 верхнюю границу для генеральной средней.

Ответ: 50,2

Задача № 3.144

На основание выборочных наблюдений за производительностью труда n=37 рабочих было вычислено =400 метров ткани в час S=12 м/ч. в предложение о нормальном распределение найти вероятность того, что средне квадратическое отклонение будет находится в интервале от 11 до 13.

Ответ: P(11<<13)=0,8836

Задача № 4.6

С помощью критерия Пирсона на уровне значимости =0,02 проверить гипотезу о биноминальном законе распределения на основание следующих данных.

M>i>

85

120

25

10

Mt>i>

117

85

37

9

m>i>

m>i>T

(m>i>-m>i>T)2

(m>i>-m>i>T)2/ m>i>T

85

117

1024

8,752137

120

85

1225

14,41176

25

37

144

3,891892

10

9

1

0,111111

27,1669

2>факт.>=(m>i>- m>i>T)/ m>i>T=27,17

2>табл.>= (=2, =0,02)=7,824

2>факт>>>>2>табл>

Ответ: Выдвинутая гипотеза о нормальном законе распределения отвергается с вероятностью ошибки альфа.

2-я контрольная работа

Задача 4.29

По результатам n =4 измерений в печи найдено = 254 C. Предполага­ется, что ошибка измерения есть нормальная случайная величина с = 6 C. На уровне значимости = 0.05 проверить гипотезу H>0>: = 250 C против гипотезы H>1>: = 260 C. В ответе записать разность между абсолютными величинами табличного и фактического значений выборочной характеристики.

>1> > >0> выберем правостороннюю критическую область.

Ответ: Т.к. используем правостороннюю критическую область, и t>кр> > t>набл>, то на данном уровне значимости нулевая гипотеза не отвергается (|t>кр>| - |t>набл> |=0,98).

Задача 4.55

На основание n=5 измерений найдено, что средняя высота сальниковой камеры равна мм, а S=1,2 мм. В предположение о нормальном распределение вычислить на уровне значимости =0,01 мощность критерия при гипотезе H>0> :50 и H>1 >: 53

Ответ: 23

Задача 4.70

На основании n = 15 измерений найдено, что средняя высота сальниковой камеры равна = 70 мм и S = 3. Допустив, что ошибка изготовления есть нормальная случайная величина на уровне значимости = 0.1 проверить гипотезу H>0>: мм2 при конкурирующей гипотезе . В ответе записать разность между абсолютными величинами табличного и фактического значений выборочной характеристики.

построим левостороннюю критическую область.

Вывод: на данном уровне значимости нулевая гипотеза не отвергается ().

Задача 4.84

По результатам n = 16 независимых измерений диаметра поршня одним прибором получено = 82.48 мм и S = 0.08 мм. Предположив, что ошибки измерения имеют нормальное распределение, на уровне значимости = 0.1 вычислить мощность критерия гипотезы H>0>: при конкурирующей гипотезе H>1>: .

построим левостороннюю критическую область.

Ответ: 23;

Задача 4.87

Из продукции двух автоматических линий взяты соответственно выборки n>1> = 16 и n>2> = 12 деталей. По результатам выборочных наблюдений найдены  = 180 мм и  = 186 мм. Предварительным анализом установлено, что погрешности изготовления есть нормальные случайные величины с дисперсиями  мм2 и  мм2. На уровне значимости  = 0.025 проверить гипотезу H>0>>1 = >>2> против H>1>>><> >>2>.

Т.к. H>1>: >1 ><>>2>, будем использовать левостороннюю критическую область.

Вывод: гипотеза отвергается при данном уровне значимости.

Задача 4.96

Из двух партий деталей взяты выборки объемом n>1> = 16 и n>2> = 18 деталей. По результатам выборочных наблюдений найдены  = 260 мм, S>1> = 6 мм,  = 266 мм и S>2> =7 мм. Предполагая, что погрешности изготовления есть нормальные случайные величины и , на уровне значимости  = 0.01 проверить гипотезу H>0>: >1 = >>2> против H>1>>>> >>2>.

Вывод: при данном уровне значимости гипотеза не отвергается.

Задача 4.118

Из n>1> = 200 задач первого типа, предложенных для решения, студенты решили m>1> = 152, а из n>2> = 250 задач второго типа студенты решили m>2> = 170 задач. Проверить на уровне значимости  = 0.05 гипотезу о том, что вероятность решения задачи не зависит от того, к какому типу она относится, т.е. H>0>: P>1> = P>2>. В ответе записать разность между абсолютными величинами табличного и фактического значений выборочной характеристики.

Вывод:нулевая гипотеза при данном уровне значимости принимается ().

Задача 1.39:

Вычислить центральный момент третьего порядка (>3>*) по данным таблицы:

Урожайность (ц/га), Х

34,5-35,5

34,5-36,5

36,5-37,5

37,5-38,5

38,5-39,5

Число колхозов, m>i>

4

11

20

11

4

Решение:

Урожайность (ц/га), Х

Число колхозов, m>i>

X>i>

m>i>x>i>

(x>i>-x>ср>)3

(x>i>-x>ср>)3m>i>

34,5-35,5

4

35

140

-8

-32

34,5-36,5

11

36

396

-1

-11

36,5-37,5

20

37

740

0

0

37,5-38,5

11

38

418

1

11

38,5-39,5

4

39

156

8

32

Итого:

50

-

1850

-

0

Ответ:>3>*=0

Задача 2.34:

В результате анализа технологического процесса получен вариационный ряд:

Число дефектных изделий

0

1

2

3

4

Число партий

79

55

22

11

3

Предполагая, что число дефектных изделий в партии распределено по закону Пуассона, определить вероятность появления 3 дефектных изделий.

Решение:

m

0

1

2

3

4

p

0.4647

0.3235

0.1294

0.0647

0.0176

О

твет:
P=7.79*10-7

Зпадача 3.28:

В предложении о нормальной генеральной совокупности с =5 сек., определить минимальный объем испытаний, которые нужно провести, чтобы с надежностью =0.96 точность оценки генеральной средней  времени обработки зубчатого колеса будет равна =2 сек.

Р
ешение:

n



=(5.1375)3=26.3927

Ответ: n=27

З
адача 3.48:

На основании измерения n=7 деталей вычислена выборочная средняя и S=8 мк. В предположении, что ошибка изготовления распределена нормально, определить с надежностью =0.98 точность оценки генеральной средней.

Решение:

S


t(t,=n-1)==St(t,6)=0.98

Ответ: =0.4278

Задача 3.82:

На основании n=4 измерений температуры одним прибором определена S=9 С. Предположив, что погрешность измерения есть нормальная случайная величина определить с надежностью =0.9 нижнюю границу доверительного интервала для дисперсии.

Решение:

О



твет:
41.4587

Задача 3.103:

Из 400 клубней картофеля, поступившего на контроль вес 100 клубней превысили 50 г. Определить с надежностью =0.98 верхнюю границу доверительного интервала для вероятности того, что вес клубня превысит 50 г.

Решение:

t

=2.33

О
твет:
0.3

Задача 3.142:

По результатам 100 опытов установлено, что в среднем для сборки вентиля требуется X>ср>=30 сек., а S=7 сек. В предположении о нормальном распределении определить с надежностью =0.98 верхнюю границу для оценки  генеральной совокупности.

Решение:

t

=2.33

О
твет:
8.457

Задача 4.18:

Гипотезу о нормальном законе распределения проверить с помощью критерия Пирсона на уровне значимости =0.05 по следующим данным:

m>i>

6

13

22

28

15

3

m>i>T

8

17

29

20

10

3

Решение:

m>i>

m>i>T

(m>i>-m>i>T)2

(m>i>-m>i>T)2/ m>i>T

6

8

4

0.5

13

17

16

0.941

22

29

49

1.6897

28

20

64

3.2

15

10

25

1.9231

3

3

Итого:

-

-

8.2537

О



твет:
-2.2627

1.36.

Вычислить дисперсию.

Производительность труда

Число рабочих

Средняя производительность труда

81,5-82,5

9

82

82,5-83,5

15

83

83,5-84,5

16

84

84,5-85,5

11

85

85,5-86,5

4

86

Итого

55

2.19.

Используя результаты анализа и предполагая, что число дефектных изделий в партии распределено по закону Пуассона, определить теоретическое число партий с тремя дефектными изделиями.

m

0

1

2

3

4

5

Итого

fi

164

76

40

27

10

3

320

Pm

0,34

0,116

0,026

0,004

0,001

Pm*f>i>

288,75

25,84

4,64

0,702

0,04

0,003

320

f>i >>теор.>

288

26

5

1

0

0

320

m – число дефектных изделий в партии,

f>i> – число партий,

f>i >>теор.> = теоретическое число партий


Теоретическое значение числа партий получается округлением Pm*f>i>.

Соответственно, теоретическое количество партий с тремя дефектными изделиями равно 1.

3.20.

По выборке объемом 25 вычислена выборочная средняя диаметров поршневых колец. В предложении о нормальном распределении найти с надежностью γ=0,975 точность δ, с которой выборочная средняя оценивает математическое ожидание, зная, что среднее квадратическое отклонение поршневых колец равно 4 мм..

3
.40.

П
о результатам семи измерений средняя высота сальниковой камеры равна 40 мм., а S=1,8 мм.. В предположении о нормальном распределении определить вероятность того, что генеральная средняя будет внутри интервала (0,98х;1,02х).

3.74.

По данным контрольных 8 испытаний определены х=1600 ч. и S=17ч..Считая, что срок службы ламп распределен нормально, определить вероятность того, что абсолютная величина ошибки определения среднего квадратического отклонения меньше 10% от S.

3.123.

По результатам 70 измерений диаметра валиков было получено х=150 мм., S=6,1 мм.. Найти вероятность того, что генеральная средняя будет находиться внутри интервала (149;151).

3.126

По результатам 50 опытов установлено, что в среднем для сборки трансформатора требуется х=100 сек., S=12 сек.. В предположении о нормальном распределении определить с надежностью 0,85 верхнюю границу для оценки неизвестного среднего квадратического отклонения.

4.10

С помощью критерия Пирсона на уровне значимости α=0,02 проверить гипотезу о законе распределения Пуассона (в ответе записать разность между табличными и фактическими значениями χ2).

m>i>

m>i>T

(m>i>-m>i>T)2

(m>i>-m>i>T)2/m>i>T

80

100

400

4

125

52

5329

102,5

39

38

1

0,03

12

100

4

0,4

∑=256

200

5734

122,63

Г
ипотеза противоречит закону распределения Пуассона.