Контрольная работа (работа 17)
№385. Вычислить несобственные интегралы или установить их расходимость.
По определению несобственного интеграла имеем:


Интеграл сходится.
№301. Найти неопределенный интеграл.
Представим подинтегральную функцию в виде слагаемых
№522. Даны дифференциальные уравнения второго порядка, допускающие понижение порядка. Найти частное решение, удовлетворяющее указанным начальным условиям.
П
онизим
порядок дифференциального уравнения,
т.е. введем новую функцию , тогда
и получаем уравнение
Это линейное уравнение первого порядка.
Введем новые функции u=u(x) и v=v(x).
П
усть
, тогда , т.е.
(1)
Предположим, что функция такова, что она обращает в тождественный нуль выражение, стоящее в круглых скобках уравнения (1) т.е., что она является решением дифференциального уравнения.
это уравнение с разделяющимися переменными
З
десь
Подставляем значение v в уравнение (1), получаем
Следовательно,
а
т.к. , то
р
ешим
отдельно интеграл
,
тогда
о
бщее
решение данного дифференциального
уравнения.
Найдем частное решение при заданных условиях
Т
.к.
, то
Т.к. , то
-
частное решение при заданных условиях.
№543. Даны линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами. Найти частное решение, удовлетворяющее указанным начальным условиям.
Составим характеристическое уравнение
Т.к. , то общее решение запишется в виде
Н

айдем
частное решение т.к. в правой части
стоит , то
Найдем и
П
одставим
значение и в данное уравнение,
получим:
Общее решение данного дифференциального уравнения.
Найдем частное решение при заданных начальных условиях


,
т.к. , то


,
т.к. , то
решаем систему
и
- частное решение при заданных начальных условиях.