Алгебраические формулы (работа 1)

cos=1-sin2=(1-tg2/2)/(1+tg2/2)

sin=1/1+ctg2=(2tg/2)/(1+tg2/2)

cos()=sinsincoscos

sin(=sincossincos

tg(+)=sin(+)/cos(+)=(tg+tg)/(1-tgtg)

tg(-)=(tg-tg)/(1+tgtg)

ctg(+)=(ctgctg-1)/(ctg+ctg)

ctg(-)=(ctgctg+1)/(ctg-ctg)

sin2=2sincos=(2tg)/(1+tg2)

cos2=cos2-sin2=(1-tg2)/(1+tg2)=2cos2-1=1-2sin2

tg2=2tg/(1-tg2) ctg2=(ctg2-1)/2ctg

ctg2=(ctg2-1)/2ctg

cos2/2=1+cos/2 cos2=(1+cos2)/2

sin2/2=1-cos/2 sin2=(1-cos2)/2

cos/2=1+cos/2

sin/2=1-cos/2

tg/2=1-cos/1+cos=(sin)/(1+cos)=(1-cos)/sin

ctg/2=1+cos/1-cos=sin/(1-cos)=(1+cos)/sin

sin+cos=2 cos(/4-)

sin-cos=2 sin(-/4)

cos-sin=2 sin(/4-)

cos+cos=2cos(+)/2cos(-)/2

cos-cos=-2sin(+)/2sin(-)/2

sin+sin=2sin(+)/2cos(-)/2

sin-sin=2sin(-)/2cos(+)/2

tgtg=(sin())/coscos

coscos=1/2(cos()+cos(+))

sinsin=1/2(cos()-cos(+))

sincos=1/2(sin(+)+sin(-))

tg=(2tg/2)/(1-tg2/2)

cos=1-sin2=(1-tg2/2)/(1+tg2/2)

sin=1/1+ctg2=(2tg/2)/(1+tg2/2)

cos()=sinsincoscos

sin(=sincossincos

tg(+)=sin(+)/cos(+)=(tg+tg)/(1-tgtg)

tg(-)=(tg-tg)/(1+tgtg)

ctg(+)=(ctgctg-1)/(ctg+ctg)

ctg(-)=(ctgctg+1)/(ctg-ctg)

sin2=2sincos=(2tg)/(1+tg2)

cos2=cos2-sin2=(1-tg2)/(1+tg2)=2cos2-1=1-2sin2

tg2=2tg/(1-tg2) ctg2=(ctg2-1)/2ctg

ctg2=(ctg2-1)/2ctg

cos2/2=1+cos/2 cos2=(1+cos2)/2

sin2/2=1-cos/2 sin2=(1-cos2)/2

cos/2=1+cos/2

sin/2=1-cos/2

tg/2=1-cos/1+cos=(sin)/(1+cos)=(1-cos)/sin

ctg/2=1+cos/1-cos=sin/(1-cos)=(1+cos)/sin

sin+cos=2 cos(/4-)

sin-cos=2 sin(-/4)

cos-sin=2 sin(/4-)

cos+cos=2cos(+)/2cos(-)/2

cos-cos=-2sin(+)/2sin(-)/2

sin+sin=2sin(+)/2cos(-)/2

sin-sin=2sin(-)/2cos(+)/2

tgtg=(sin())/coscos

coscos=1/2(cos()+cos(+))

sinsin=1/2(cos()-cos(+))

sincos=1/2(sin(+)+sin(-))

tg=(2tg/2)/(1-tg2/2)