Алгебраические формулы (работа 1)
cos=1-sin2=(1-tg2/2)/(1+tg2/2) |
sin=1/1+ctg2=(2tg/2)/(1+tg2/2) |
cos()=sinsincoscos |
sin(=sincossincos |
tg(+)=sin(+)/cos(+)=(tg+tg)/(1-tgtg) |
tg(-)=(tg-tg)/(1+tgtg) |
ctg(+)=(ctgctg-1)/(ctg+ctg) |
ctg(-)=(ctgctg+1)/(ctg-ctg) |
sin2=2sincos=(2tg)/(1+tg2) |
cos2=cos2-sin2=(1-tg2)/(1+tg2)=2cos2-1=1-2sin2 |
tg2=2tg/(1-tg2) ctg2=(ctg2-1)/2ctg |
ctg2=(ctg2-1)/2ctg |
cos2/2=1+cos/2 cos2=(1+cos2)/2 |
sin2/2=1-cos/2 sin2=(1-cos2)/2 |
cos/2=1+cos/2 |
sin/2=1-cos/2 |
tg/2=1-cos/1+cos=(sin)/(1+cos)=(1-cos)/sin |
ctg/2=1+cos/1-cos=sin/(1-cos)=(1+cos)/sin |
sin+cos=2 cos(/4-) |
sin-cos=2 sin(-/4) |
cos-sin=2 sin(/4-) |
cos+cos=2cos(+)/2cos(-)/2 |
cos-cos=-2sin(+)/2sin(-)/2 |
sin+sin=2sin(+)/2cos(-)/2 |
sin-sin=2sin(-)/2cos(+)/2 |
tgtg=(sin())/coscos |
coscos=1/2(cos()+cos(+)) |
sinsin=1/2(cos()-cos(+)) |
sincos=1/2(sin(+)+sin(-)) |
tg=(2tg/2)/(1-tg2/2) |
cos=1-sin2=(1-tg2/2)/(1+tg2/2) |
sin=1/1+ctg2=(2tg/2)/(1+tg2/2) |
cos()=sinsincoscos |
sin(=sincossincos |
tg(+)=sin(+)/cos(+)=(tg+tg)/(1-tgtg) |
tg(-)=(tg-tg)/(1+tgtg) |
ctg(+)=(ctgctg-1)/(ctg+ctg) |
ctg(-)=(ctgctg+1)/(ctg-ctg) |
sin2=2sincos=(2tg)/(1+tg2) |
cos2=cos2-sin2=(1-tg2)/(1+tg2)=2cos2-1=1-2sin2 |
tg2=2tg/(1-tg2) ctg2=(ctg2-1)/2ctg |
ctg2=(ctg2-1)/2ctg |
cos2/2=1+cos/2 cos2=(1+cos2)/2 |
sin2/2=1-cos/2 sin2=(1-cos2)/2 |
cos/2=1+cos/2 |
sin/2=1-cos/2 |
tg/2=1-cos/1+cos=(sin)/(1+cos)=(1-cos)/sin |
ctg/2=1+cos/1-cos=sin/(1-cos)=(1+cos)/sin |
sin+cos=2 cos(/4-) |
sin-cos=2 sin(-/4) |
cos-sin=2 sin(/4-) |
cos+cos=2cos(+)/2cos(-)/2 |
cos-cos=-2sin(+)/2sin(-)/2 |
sin+sin=2sin(+)/2cos(-)/2 |
sin-sin=2sin(-)/2cos(+)/2 |
tgtg=(sin())/coscos |
coscos=1/2(cos()+cos(+)) |
sinsin=1/2(cos()-cos(+)) |
sincos=1/2(sin(+)+sin(-)) |
tg=(2tg/2)/(1-tg2/2) |