Мир глазами Поля Дирака: объединение идей квантовой механики и релятивизма
Мир глазами Поля Дирака: объединение идей квантовой механики и релятивизма
Недостаточность “классической” квантовой механики.
По своему построению квантовая механика является существенно нерелятивистской теорией: используемое в уравнении Шредингера выражение для оператора Гамильтона является обобщением классической формулы для энергии. Для множества реальных приложений теории (физика кристаллов, химия, биология) требование малости скоростей не является существенным ограничением: диапазон энергий, с которыми приходится иметь дело в земных условиях недостаточен для разгона объектов до релятивистских скоростей. Однако существует целый ряд разделов естествознания, развитие которых сделало актуальным вопрос о разработке релятивистской квантовой теории. К ним прежде всего следует отнести разделы физики, занимающиеся взаимодействием света с веществом: зародившаяся в результате попыток понять физическую природу света квантовая механика оказалась неспособной адекватно описать ультрарелятивистскую частицу - фотон. Релятивистская теория микромира необходима физике ядра и элементарных частиц, поскольку изучаемые в ее рамках процессы с участием сильных взаимодействий сопровождаются обменом большими порциями энергии, что неизбежно связано с возникновением высоких скоростей. Космологические теории эволюции Вселенной и Большого Взрыва требуют развития аппарата описания вещества в экстремальных (с нашей точки зрения) состояниях. Наконец, наличие плохо связанных друг с другом релятивистской и квантовой теорий, каждая из которых по-своему “объясняла” классическую концепцию, являющуюся предельным случаем каждой из них, неизбежно ставило вопрос об их объединении. Попытки обобщения квантовой механики и придания ей релятивистски инвариантной формы делались буквально с первых шагов ее создания, но до сих пор еще не привели к созданию законченной и полностью свободной от внутренних противоречий теории.
S-матрица.
Дополнительной сложностью, присущей
релятивистской теории является
несохранение числа частиц, участвующих
в процессе. В частности это означает,
что любая рассматриваемая система
должная обладать бесконечным числом
степеней свободы. Поскольку сама
процедура измерения координат частицы
в принципе может приводить к рождению
новых частиц, она становится принципиально
бессмысленной. Релятивистская квантовая
теория отказывается не только от описания
пространственного положения микрообъектов,
но и от описания процессов с их участием
в виде происходящих последовательно
(друг за другом) промежуточных событий.
Расчеты поддаются лишь амплитуды
вероятностей переходов системы из
исходного состояния при
,
в котором все входящие в нее частицы
находятся так далеко друг от друга, что
взаимодействие между ними пренебрежимо
мало в одно из допустимых законами
сохранения конечное состояние при
,
в котором продукты реакции вновь являются
практически свободными объектами. Набор
амплитуд таких переходов образует
s-матрицу,
вычисление которой и является задачей
релятивистской квантовой теории.
Уравнение Клейна-Гордона было первой удачной попыткой обобщения уравнения Шредингера на случай релятивистского описания электромагнитных взаимодействий микрообъектов. В основе предложенного вывода лежала идея заменить нерелятивистский оператор Гамильтона в уравнении Шредингера
на его релятивистский аналог, вид которого устанавливался на основании сравнения классических (не квантово-механических) выражений для релятивистской и нерелятивистской функций Гамильтона:
,
где учтена возможность
взаимодействия зарядов с электрическим
и магнитным полями, описываемыми
потенциалами
и A.
Основная математическая трудность, возникающая при попытке перевести релятивистскую формулу (3) на язык квантово-механических операторов состояла в том, что операция извлечения корня из оператора не определена. Предложенный выход состоял в переходе к уравнению второго порядка, возникающего при возведении в квадрат операторного аналога уравнения (3), где сам оператор Гамильтона согласно (1) заменялся на оператор дифференцирования по времени:
.
Полученное таким образом уравнение могло быть легко протестировано на хорошо изученном частном случае описания фотона (q=0, m=0). Подстановка указанных значений приводит к обыкновенному уравнению Д’Аламбера, описывающему распространение света в вакууме.
Уравнение Клейна-Гордона в настоящее время считается правильным релятивистским обобщением уравнений квантовой механики, не учитывающих наличие спина у микрообъектов. Оно адекватно оисывает поведение частиц с нулевым спином.
Список литературы
Для подготовки данной применялись материалы сети Интернет из общего доступа