Ядерный магнитный резонанс (ЯМР) (работа 1)
Ядерный магнитный резонанс (ЯМР)
Виктор Лаврус
Явление магнитного резонанса используется для обнаружения и измерения электрических и магнитных взаимодействий электронов и ядер в макроскопических количествах вещества. Это явление обусловлено парамагнитной ориентацией электронного и ядерного токов внешним полем и их ларморовской прецессией относительно направления внешнего поля. Частота ларморовской прецессии пропорциональна напряженности магнитного поля, приложенного в области нахождения прецессирующего электрона или ядра. Когда соседние частицы дают вклад в локальное магнитное поле, он измеряется по сдвигу частоты прецессии. Дополнительный сдвиг частоты прецессии может произойти также за счет неоднородных электрических полей, создаваемых соседними частицами.
Ларморовская прецессия
Эксперименты, в которых прослеживается отклик атомов на магнитное поле, дают ключевую информацию об атомной механике. Ларморовская прецессия атомов и других частиц в магнитном поле состоит в том, что средний магнитный момент атомов периодически изменяет направление. Описание этого изменения служит прототипом описания нестационарных состояний атомных систем. Изучая нестационарные состояния, мы прослеживаем развитие атомных явлений во времени, тогда как при изучении стационарных состояний мы сосредотачиваемся на свойствах, остающихся неизменными.
Механическим аналогом Ларморовской прецессии служит вращающийся волчок.
Рис. 1. Прецессия вращающегося волчка. J – момент импульса, Р – сила тяжести, R – реакция опоры, М – вращающий момент.
Действие вращающего момента, например на атом газа, приводит к гироскопическому эффекту, при котором инерция атома проявляется как момент импульса. Иными словами, воздействие внешнего постоянного магнитного поля B на атомный контур с током аналогично воздействию силы тяжести на вращающийся волчок и описывается аналогичным уравнением. Вращающий момент М волчка стремится опустить его центр масс, поворачивая ось вращения относительно точки опоры. В случае атома с кольцевым током вращающий момент М, определяемый равенством M=[μ·B], стремится повернуть атом вокруг его центра масс. В обоих случаях воздействие вращающего момента изменяет момент импульса J, обусловленный вращением волчка или циркуляцией носителей тока в атоме. Уравнение движения имеет вид:
M = dJ/dt.
Векторная добавка dJ/dt к мгновенному значению момента импульса J вызывает прецессию его направления относительно оси, вертикальной в случае волчка и параллельной вектору индукции внешнего магнитного поля B в случае атома. В ходе прецессии угол между J и осью прецессии остается постоянным. Угловая скорость прецессии обычно описывается вектором ω, параллельным этой оси:
dJ/dt = [ω·J].
Таким образом, мы видим, что атомы могут прецессировать вокруг направления приложенного внешнего магнитного поля.
Схема установки
Схема экспериментальной установки изображена на рис.2.
Рис. 2. Схематическое изображение установки для эксперимента по магнитному резонансу. Резонанс достигается в радиочастотном диапазоне. Катушка (а) и резонатор (б) присоединяются к источникам переменного поля и измерителям потери мощности.
Исследуемый образец помещается внутрь радиочастотной катушки или микроволнового резонатора, расположенных между полюсами магнита. Крайне высокая точность настройки установки и ее чувствительность при определении поглощаемой мощности – главное преимущество метода магнитного резонанса. В стандартной экспериментальной методике частота колебаний ω поперечного поля поддерживается постоянной и резонанс достигается с помощью изменения напряженности поля B>0>, что приводит к медленному изменению частоты прецессии γB>0>. На экране осциллографа при этом можно наблюдать компоненту M, колеблющуюся либо в противофазе с управляющим поперечным полем В>1>cosωt (т.е. поглощаемую мощность), либо в фазе с ним (рис.3).
Рис. 3. Сигналы магнитного резонанса протона в жидком водороде а) Потеря мощности, б) Компонента М, находящаяся в фазе с поперечным полем.
Методика измерения
Магнитный резонанс наблюдается по изменению магнитного момента M образца вещества, помещенного во внешнее поле. Вектор M равен сумме средних моментов <μ> всех атомных систем, составляющих данный образец, обычно наблюдаемые изменения вектора M обусловлены прецессией моментов <μ> отдельных составляющих, например ядер атомов водорода.
Средний магнитный момент <μ> атомной системы, возникающий в результате парамагнитной ориентации, обычно параллелен локальному полю B>0>, которое мы считаем постоянным. Следовательно, если момент <μ> не отклоняется от направления B>0> каким-либо возмущающим полем, то он не прецессирует вокруг B>0>. При отклонении момента <μ> возникает прецессия с частотой γB>0>, гиромагнитное отношение γ предполагается известным из других экспериментов. Отклонение <μ> происходит при наложении переменного поперечного поля напряженности B>1>cosωt, если ω совпадает с частотой прецессии γB>0>. Такое совпадение частот и обеспечивает возникновение магнитного резонанса. Появление прецессии наблюдается чаще всего по поглощению энергии переменного поперечного поля. Эксперименты по магнитному резонансу позволяют найти распределение поля в веществе в местах расположения токов, для которых наблюдается этот резонанс. Например, в типичном эксперименте по обнаружению резонанса спиновых токов в органических веществах определяются напряженности магнитного поля в местах нахождения различных атомов водорода. Если напряженности B>i>, поля в разных точках образца одинаковы, резонанс наблюдается на одной частоте, которая равна ω при B>i>=B>0> и отличается от нее на постоянную величину в противном случае. Изменение величины внутреннего поля от точки к точке приводит к возникновению резонанса на разных частотах.
Список литературы
Фано У., Фано Л. Физика атомов и молекул. Пер. с англ. / Под ред. Л.И. Пономарева. – М.: Наука, 1980.
Физика микромира. Маленькая энциклопедия. [Гл. ред. Д.В. Ширков]. – М.: «Сов. энциклопедия», 1980.