Полуточка: модель скорости
Полуточка: модель скорости
Каратаев Евгений Анатольевич
Настоящая статья строит модель скорости в рамках модели полуточки и приводит две простых иллюстрации, демонстрирующие и иллюстрирующие модель скорости в общеизвестных случаях поступательной и вращательной скорости. В статье приводится в основном модель скорости, и разбор отдельных случаев скорости и её видов представляется либо темой отдельной статьи, либо большой работы о кинематике, выраженной на языке гиперкомплексных чисел.
Для понимания предлагаемой модели скорости частично повторим основные положения модели полуточки и модели миров.
Точка пространства испытывает изменение при переходе от одной системы отсчёта к другой:
|
(1) |
Считается, что точка принадлежит миру с временем :
|
(2) |
В этой статье понятия системы координат и системы отсчёта полагаются совпадающими. Полагается, что положение точки и её состояние измеряются в некоторой идеальной системе, выбираемой наблюдателем по его усмотрению.
Состояния точки в два различных момента времени могут быть определены относительно одной и той же системы координат. Будем полагать, что из первого состояния во второе можно попасть, совершив преобразование системы координат:
|
(3) |
Здесь величина определяет преобразование, которое следует совершить для такого перехода. При этом есть разность времён этих двух миров:
|
(4) |
Также будем полагать, что эти два состояния разделены друг от друга бесконечно малым расстоянием во времени:
|
(5) |
Под скоростью будем понимать величину, определенную классическим способом: Если величина зависит от величины , и с течением величина испытывает изменение, то скоростью называется предел отношения приращений величин и :
|
(6) |
Ещё одно небольшое отступление нужно сделать для описания и выбора точной модели преобразования Пуанкаре. Дело в том, что пока рассматриваются лишь пространственно-временные преобразования, им в действительности удовлетворяет два различных преобразования:
|
(7) |
и
|
(8) |
Здесь в первом случае используется скалярно-векторное сопряжение, во втором - скалярно-алгебраическое. Для того, чтобы выявить, в чем они различаются с точки зрения группы Пуанкаре, распишем их операторное представление:
|
(9) |
|
(10) |
|
(11) |
Видно, что эти два оператора отличаются псевдоскалярной частью параметра. В силу того, что её можно вынести из оператора преобразования, оба варианта могут быть представлены как:
|
(12) |
|
(13) |
где через обозначен оператор с вынесенной псевдоскалярной составляющей из его параметров:
|
(14) |
Таким образом, предстоит сделать выбор между двумя вариантами преобразований: 1) использовать скалярно-векторное сопряжение или 2) использовать скалярно-алгебраическое сопряжение. Выберем вариант 1 с отбрасыванием рассмотрения псевдоскалярной составляющей параметра преобразований в силу того, что пока в наши цели не входит рассмотрение псевдоскалярных преобразований и в силу того, что векторное сопряжение удобнее в силу его линейности.
А именно:
|
(15) |
|
(16) |
Поэтому мы можем выполнить дальнейший вывод более наглядно.
В силу того, что величина и её приращение являются скалярами, имеем:
|
(17) |
И в случае когда мало, имеем:
|
(18) |
|
(19) |
Используя это соотношение для преобразования полуточки, распишем выражение для преобразования точки:
|
|
|
|
|
|
|
(20) |
Оставив члены первого порядка малости по :
|
(21) |
Используя определение полуточки
получим:
|
(22) |
Положив точку функцией величины и сравнив с разложением её в ряд Тейлора в окрестности , получим:
|
(23) |
Это выражение и является определением скорости точки , если она движется во времени , испытывая в каждый его момент преобразование Пуанкаре:
|
(24) |
Выражение (23) является скалярно-векторно сопряжённым самому себе:
|
(25) |
То есть абсолютное приращение точки выполняется несмотря на произвольность величины так, что точка остается сама себе скалярно-векторно сопряжённой.
Отметим также, что в силу свойства точки верно равенство:
|
(26) |
Далее...
Придерживаясь модели полной группы Пуанкере, мы должны считать величины и дуальными бикватернионами, имеющими 16 компонент. В силу требования скалярно-векторной сопряжённости самой себе точка часть компонентов имеет нулевыми.
Для понимания дальнейшего вывода представим величины и в виде, явно содержащем разделение на главную и дуальную части:
|
|
|
|
|
|
|
(27) |
Здесь индексом обозначены главные части, а индексом - дуальные. Пользуясь введенным обозначением, распишем выражение скорости:
|
|
Сгруппировав главные и дуальные части, получим:
|
(28) |
Используя это разложение в главных и дуальных частях и задавая различные частные случаи величин , , и , оценим характер вклада в скорость точки отдельных величин и . А также найдём их сопоставление отдельным общеизвестным скоростям.
Случай 1.
Зададим точку как дуальный вектор с единичной главной частью:
|
(29) |
а величину как дуальный вектор с нулевой главной частью:
|
(30) |
Тогда, используя разложение (29), найдем скорость точки при таком преобразовании:
|
(31) |
В силу того, что выбрано условие , имеем:
|
(32) |
Таким образом, в приведённых выше условиях величина является линейной скоростью приращения дуальной части . В силу того, что в состав величины входит как полярная, так и дуальная части, то есть:
|
(33) |
то в силу свойств функций и , определённых как
|
(34) |
|
(35) |
И имеющих свойства сопрягаться:
|
(36) |
|
(37) |
Имеем равенство для первого случая:
|
(38) |
Или: величина является линейной скоростью изменения вектора .
Случай 2. Выберем величины и такими, что выполняются следующие условия:
|
(39) |
Используя выражение (29) с этими условиями, получим:
|
(40) |
В силу выбора и свойства (38) имеем:
|
(41) |
И, также в силу свойства (38), в выражении скорости остаются члены:
|
(42) |
Переведя величины и в векторную запись и раскрыв произведение по правилу произведения кватернионов, получим:
|
(43) |
где с помощью скобок [] обозначено традиционное векторное произведение 3-х мерных векторов и .
Или: величина является угловой скоростью вращения вектора .
Таким образом, величины и имеют всем хорошо известные механические кинематические интерпретации.
Целью настоящей работы было дать модель скорости и её иллюстрация в частных случаях. Поэтому полный разбор сочетаний и здесь не рассматривается и автор полагает, что такое рассмотрение должно стать темой отдельной работы, посвящённой именно этому вопросу.
К будущим исследованиям могут быть отнесены: величины и , а также отдельное исследование главной части точки . В данной работе рассматривалась лишь её дуальная составляющая. Но общая модель преобразования Пуанкаре потребовала объединения в одну величину дуальной и главной частей вектора , существенно увеличив его размерность. Автор полагает, что будущие исследования покажут оправданность такого объединения. Кроме того, остаётся совершенно нерассмотренной возможность замены скалярно-векторного сопряжения на скалярно-алгебраическое в преобразовании Пуанкаре и следствия такой замены.
Список литературы
Для подготовки данной применялись материалы сети Интернет из общего доступа