Структурные уровни организации материи. Микро, макро, мега миры

1


1. Введение.

Весь окружающий нас мир представляет собой движущуюся материю в её бесконечно разнообразных формах и проявлениях, со всеми её свойствами, связями и отношениями. Рассмотрим подробнее, что же такое материя, а так же ее структурные уровни.

    Что такое материя. История возникновения взгляда на материю.

Материя (лат. Materia – вещество), «…философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от нас».

Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. Материя включает в себя не только все непосредственно наблюдаемые объекты и тела природы, но и все те, которые в принципе могут быть познаны в будущем на основе совершенствования средств наблюдения и эксперимента. С точки зрения марксистско-ленинского понимания материи, она органически связана с диалектико-материалистическим решением основного вопроса философии; оно исходит из принципа материального единства мира, первичности материи по отношению к человеческому сознанию и принципа познаваемости мира на основе последовательного изучения конкретных свойств, связей и форм движения материи.

В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность. Для обозначения целостности объектов в науке было выработано понятие системы. [1]

Материя как объективная реальность включает в себя не только вещество в четырех его агрегатных состояниях (твердом, жидком, газообразном, плазменном), но и физические поля (электромагнитное, гравитационное, ядерное и т. д.), а также их свойства, отношения, продукты взаимодействия. Входит в нее и антивещество (совокупность античастиц: позитрон, или антиэлектрон, антипротон, антинейтрон), недавно открытое наукой. Антивещество ни в коем случае не антиматерия. Антиматерии вообще быть не может. Дальше «не» (не-материи) отрицание здесь не идет.

Движение и материя органически и нерасторжимо связаны друг с другом: нет движения без материи, как нет и материи без движения. Иначе говоря, нет в мире неизменных вещей, свойств и отношений. «Все течет», все изменяется. Одни формы или виды сменяются другими, переходят в другие – движение постоянно. Покой – диалектически исчезающий момент в беспрерывном процессе изменения, становления. Абсолютный покой равнозначен смерти, а вернее – несуществованию. Можно понять в данной связи А. Бергсона, рассматривавшего всю реальность как неделимую движущуюся непрерывность. Или А.Н.Уайтхеда, для которого «реальность есть процесс». И движение, и покой с определенностью фиксируются лишь по отношению к какой-то системе отсчета. Так, стол, за которым пишутся эти строки, покоен относительно данной комнаты, она, в свою очередь, - относительно данного дома, а сам дом – относительно Земли. Но вместе с Землей стол, комната и дом движутся вокруг земной оси и вокруг Солнца.

Движущаяся материя существует в двух основных формах – в пространстве и во времени. Понятие пространства служит для выражения свойства протяженности и порядка сосуществования материальных систем и их состояний. Оно объективно, универсально (всеобщая форма) и необходимо. В понятии времени фиксируется длительность и последовательность смены состояний материальных систем. Время объективно, неотвратимо и необратимо. Следует различать философские и естественнонаучные представления о пространстве и времени. Собственно философский подход представлен здесь четырьмя концепциями пространства и времени: субстанциальной и реляционной, статической и динамической. [3]

Основоположником взгляда на материю, как состоящую из дискретных частиц был Демокрит.

Демокрит отрицал бесконечную делимость материи. Атомы различаются между собой только формой, порядком взаимного следования, и положением в пустом пространстве, а также величиной и зависящей от величины тяжестью. Они имеют бесконечно разнообразные формы с впадинами или выпуклостями. Демокрит называет атомы также «фигурами» или «видиками», из чего следует, что атомы Демокрита являются максимально малыми, далее неделимыми фигурами или статуэтками. В современной науке много спорили о том, являются ли атомы Демокрита физическими или геометрическими телами, однако сам Демокрит еще не дошел до различения физики и геометрии. Из этих атомов, движущихся в различных направлениях, из их «вихря» по естественной необходимости путем сближения взаимноподобных атомов образуются как отдельные целые тела, так и весь мир; движение атомов вечно, а число возникающих миров бесконечно.[2]

Мир доступной человеку объективной реальности постоянно расширяется. Концептуальные формы выражения идеи структурных уровней материи многообразны.[6]

Современная наука выделяет в мире три структурных уровня.

2. Микро, Макро, Мега миры.

Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблю­даемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечно­сти до 10-24 с.

Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соот­носима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро - и мегамиры теснейшим образом взаи­мосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за еди­ницу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свой­ства атома. В XIX в. Д. И. Менделеев построил систему хими­ческих элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элемен­тов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона - отрица­тельно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома — положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая на­поминала солнечную систему: в центре находится атомное яд­ро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны - отрица­тельный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электриче­ский заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов — атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характе­ристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, ос­нованную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных со­стояний (говоря языком планетарной модели, несколько ста­ционарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состоя­ния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основа­нии представления об орбитах точечных электронов принципи­ально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это по­следнее усилие описать структуру атома на основе классиче­ской физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь час­тично. Ответы на эти вопросы были получены в результате раз­вития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макро­мире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Макромир. В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествозна­ния в XVI—XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов — мельчайших в мире частиц.

Со становления классической механики начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать нужно с концепций классической физики.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г. Галилеем была заложена основа пер­вой в истории науки физической картины мира — механиче­ской. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методо­логию нового способа описания природы — научно-теоре­тического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования. Галилей писал: «Никогда я не стану от внешних тел требовать чего-либо иного, чем величина, фигура, количество и более или менее быстрого движения для того, чтобы объяснить возникновение вкуса, запаха и звука»1.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Нью­тоном и его последователями, сложилась дискретная (корпус­кулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц — атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса.

Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи.

Движение рассматривалось как перемещение в пространст­ве по непрерывным траекториям в соответствии с законами механики.

Итогом ньютоновской картины мира явился образ Вселен­ной как гигантского и полностью детерминированного меха­низма, где события и процессы являют собой цепь взаимозави­симых причин и следствий.

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области — оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Наряду с механической корпускулярной теорией, осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно - на основе волновой теории, сформу­лированной X. Гюйгенсом. Волновая теория устанавливала ана­логию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, - светоносного эфира. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по­ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоиспы­татель X. К. Эрстед, который впервые заметил магнитное дей­ствие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное измене­ние в магнитных полях создает электрический ток.

М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его рабо­ты стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии»2.

Исхо­дя из своих исследований, Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущ­ность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж. К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцем в 1888 г.

После экспериментов Г. Герца в физике окончательно ут­вердилось понятие поля не в качестве вспомогательной матема­тической конструкции, а как объективно существующей физи­ческой реальности. Был открыт качественно новый, своеобразный вид материи.

Итак, к концу XIX в. физика пришла к выводу, что материя существует в двух видах: дискретного вещества и непрерывного поля.

В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказа­лись разрушенными представления классической физики о ве­ществе и поле как двух качественно своеобразных видах материи.

Мегамир. Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.

Все существующие галактики входят в систему самого высо­кого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15— 20 млрд. световых лет.

Понятия «Вселенная» и «Метагалактика» — очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» — тот же мир, но с точки зрения его структуры — как упорядоченную систему га­лактик.

Строение и эволюция Вселенной изучаются космологией. Космология как раздел естествознания, находится на своеоб­разном стыке науки, религии и философии. В основе космо­логических моделей Вселенной лежат определенные мировоз­зренческие предпосылки, а сами эти модели имеют большое мировоззренческое значение.

В классической науке существовала так называемая теория стационарного состояния Вселенной, согласно которой Вселенная всегда была почти та­кой же, как сейчас. Астрономия была статичной: изучались движения планет и комет, описывались звезды, создавались их классификации, что было, конечно, очень важно. Но вопрос об эволюции Вселенной не ставился.

Современные космологические модели Вселенной основы­ваются на общей теории относительности А. Эйнштейна, со­гласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свой­ства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами.

Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселен­ной А. Эйнштейна мировое пространство однородно и изо­тропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсаль­ным космологическим отталкиванием.

Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

Вселенная в космологической модели А. Эйнштейна стационарна, бесконечна во времени и безгранична в пространстве.

В 1922г. русский математик и геофизик А.А Фридман отбросил постулат классической космологии о стационарности Вселенной и получил решение уравнения Эйнштейна, описывающее Вселенную с “расширяющимся” пространством.

Поскольку средняя плотность вещества во Вселенной неизвестна, то сегодня мы не знаем, в каком из этих пространств Вселенной мы живем.

В 1927 г. бельгийский аббат и ученый Ж. Леметр связал “расширение” пространства с данными астрономических наблюдений. Леметр ввел понятие начала Вселенной как сингулярности (т.е. сверхплотного состояния) и рождения Вселенной как Большого взрыва.

В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется.

Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3. В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры”3

Эра адронов. Тяжелые частицы, вступающие в сильные взаи­модействия.

Эра лептонов. Легкие частицы, вступающие в электромагнит­ное взаимодействие.

Фотонная эра. Продолжительность 1 млн. лет. Основная до­ля массы — энергии Вселенной — приходится на фотоны.

Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.

Затем разворачивается грандиозная картина образования структуры Метагалактики.

В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой кос­мологией. В этой модели описывается эволюция Вселенной на­чиная с момента 10-45 с после начала расширения.

Сторонники инфляционной модели видят соответствие ме­жду этапами космической эволюции и этапами творения мира, описанными в книге Бытия в Библии4.

В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10-50 см

Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспо­ненциальному закону. В этот период создавалось само про­странство и время Вселенной. За период инфляционной стадии продолжительностью 10-34. Вселенная раздулась от невообра­зимо малых квантовых размеров 10-33 до невообразимо больших 101000000см, что на много порядков превосходит раз­мер наблюдаемой Вселенной — 1028 см. Весь этот первоначаль­ный период во Вселенной не было ни вещества, ни излучения.

Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осве­тившего космос.

Этап отделения вещества от излучения: оставшееся после ан­нигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от веще­ства излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и эксперименталь­но обнаруженный в 1965 г.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все бо­лее сложных структур — атомов (первоначально атомов водоро­да), галактик, звезд, планет, синтезу тяжелых элементов в не­драх звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения — человека.

Различие между этапами эволюции Вселенной в инфляци­онной модели и модели Большого взрыва касается только пер­воначального этапа порядка 10-30 с, далее между этими моделя­ми принципиальных расхождений в понимании этапов косми­ческой эволюции нет.

Пока же эти модели с помощью знаний и фантазии можно рассчитывать на компьютере, а вопрос остается открытым.

Самая большая трудность для ученых возникает при объяс­нении причин космической эволюции. Если отбросить частно­сти, то можно выделить две основные концепции, объясняющие эволюцию Вселенной: концепцию самоорганизации и концепцию креационизма.

Для концепции самоорганизации материальная Вселенная яв­ляется единственной реальностью, и никакой другой реально­сти помимо нее не существует. Эволюция Вселенной описыва­ется в терминах самоорганизации: идет самопроизвольное упо­рядочивание систем в направлении становления все более сложных структур. Динамичный хаос порождает порядок.

В рамках концепции креационизма, т.е. творения, эволюция Вселенной связывается с реализацией программы, определяемой реальностью более высокого порядка, чем материальный мир. Сторонники креационизма обращают внимание на существова­ние во Вселенной направленного номогенца — развития от простых систем ко все более сложным и информационно ем­ким, в ходе которого создавались условия для возникновения жизни и человека. В качестве дополнительного аргумента при­влекается антропный принцип, сформулированный английскими астрофизиками Б. Карром и Риссом.

Среди современных физиков – теоретиков имеются сторонники, как концепции самоорганизации, так и концепции креационизма. Последние признают, что развитие фундаментальной теоретической физики делает насущной необходимостью разработку единой научно – технической картины мира, синтезирующей все достижения в области знания и веры.

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.

Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Существуют огромные объемы пространства (порядка миллиона кубических мегапарсек), в которых галактик пока не обнаружено.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.

Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.

Эллиптические галактики – обладают пространственной формой эллипсоида с разной степенью сжатия они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики – представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – млечный путь.

Неправильные галактики – не обладают выраженной формой, в них отсутствует центральное ядро.

Некоторые галактики характеризуются исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики.

В ядре галактики сосредоточенны самые старые звезды, возраст которых приближается к возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности в пределах галактики движутся довольно сложным образом вместе с галактикой они принимают участие в расширении Вселенной, кроме того, они участвуют во вращении галактики вокруг оси.

Звезды. На современном этапе эволюции Вселенной веще­ство в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселен­ной, до сотен тысяч — самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, бла­годаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Ос­новная эволюция вещества во Вселенной происходила и проис­ходит в недрах звезд. Именно там находится тот «плавильный тигель», который обусловил химическую эволюцию вещества во Вселенной.

На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы — так называемые кратные сис­темы состоят из двух, трех, четырех, пяти и больше звезд, об­ращающихся вокруг общего центра тяжести.

Звезды объединены также в еще большие группы - звезд­ные скопления, которые могут иметь «рассеянную» или «шаровую» структуру. Рассеянные звездные скопления насчи­тывают несколько сотен отдельных звезд, шаровые скопления - многие сотни тысяч.

Ассоциации, или скопления звезд, также не являются неиз­менными и вечно существующими. Через определенное коли­чество времени, исчисляемое миллионами лет, они рассеивают­ся силами галактического вращения.

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спут­ников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. К 1979 г. было известно 34 спутника и 2000 астероидов. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела — Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вра­щаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Большинство спутников планет (их лун) вращается в том же направлении и в большинстве слу­чаев в экваториальной плоскости своей планеты. Солнце, пла­неты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: ка­ждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце - звезда второго (или еще более позднего) поколения. Таким образом, Солнечная система возникла на продуктах жизнедеятельности звезд предыдущих поколений, скапливав­шихся в газово-пылевых облаках. Это обстоятельство дает ос­нование назвать Солнечную систему малой частью звездной пыли. О происхождении Солнечной системы и ее исторической эволюции наука знает меньше, чем необходимо для построения теории планетообразования.

Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца об­разовалась в результате действия сил притяжения и отталкива­ния между частицами рассеянной материи (туманности), нахо­дящейся во вращательном движении вокруг Солнца.

Началом следующего этапа в развитии взглядов на образо­вание Солнечной системы послужила гипотеза английского фи­зика и астрофизика Дж. X. Джинса. Он предположил, что ко­гда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, преобразо­валась в планеты.

Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнит­ные. Эта идея была выдвинута шведским физиком и астрофи­зиком X. Альфвеном и английским астрофизиком Ф. Хойлом. В соответствии с современными представлениями, первона­чальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались не­большие части этого облака. Гравитационная сила стала при­тягивать остатки газа к образовавшейся звезде — Солнцу, но его магнитное поле остановило падающий газ на различных расстояниях — как раз там, где находятся планеты. Гравитаци­онная и магнитные силы повлияли на концентрацию и сгуще­ние падающего газа, и в результате образовались планеты. Ко­гда возникли самые крупные планеты, тот же процесс повто­рился в меньших масштабах, создав, таким образом, системы спутников.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невоз­можно. Во всех существующих теориях имеются противоречия и неясные места.

В настоящее время в области фундаментальной теоретиче­ской физики разрабатываются концепции, согласно которым объ­ективно существующий мир не исчерпывается материальным ми­ром, воспринимаемым нашими органами чувств или физическими приборами. Авторы данных концепций пришли к следующему выво­ду: наряду с материальным миром существует реальность высшего порядка, обладающая принципиально иной природой по сравнению с реальностью материального мира.[4,5]

Вывод.

Издавна люди пытались найти объяснение многообразию и причудливости мира.

Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.

Список литературы:

    Большая Советская энциклопедия

БСЭ, т.15,

    Карпенков С.Х. Концепции современного естествознания. М.: 1997

    Философия

http://websites.pfu.edu.ru/IDO/ffec/philos-index.html

    Владимиров Ю. С. Фундаментальная физика и религия. — М.: Архимед, 1993;

    Владимиров Ю. С., Карнаухов А. В., Кулаков Ю.И. Введение в теорию физических структур и бинарную геометрофизику. — М.: Архимед, 1993.

    Учебное пособие «Концепции современного естествознания»

1 Кузнецов Б.Т. От Галилея до Эйнштейна — М.: Наука, 1966. — С.38.

2 См.: Кудрявцев П.С. Курс истории физики. — М.: Просвещение, 1974. — С. 179.

3 См.: Дубнищева Т.Я. Указ. Соч. – С. 802 – 803.

4 См.: Гриб А.А. Большой взрыв: творение или происхождение? /В кн. Взаимо­связь физической и релиптозной картин мира. — Кострома: Изд-во МИИЦАОСТ, 1996. — С. 153—166.