Модернизация телефонной сети в сельской местности Республики Казахстан

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. Анализ текущего состояния сети с Урджар Восточно Казахстанской области

2. Цель и задачи проекта

3. Постановка задачи

4.Тенденции развития СТС

4.1.Развитие телефонной связи в сельской местности

      Связь в сельской местности

      Модернизация сельской сети

      Современные требования к модернизации СТС

      Цифровизация сельской связи: вопросы коммутации

      Требования к параметром оборудования

5 Выбор цифровой системы коммутации

6 Основные характеристики SI-2000

6.1 Основные характеристики АТС типа SI-2000

6.2 Аппаратное обеспечение

6.3 Программное обеспечение

6.4 Механическая конструкция

6.5 Сигнализация по общему каналу

6.6 Функциональная схема станции SI-2000

7 Расчет нагрузки

7.1 Исходные данные

7.2 Расчет возникающей нагрузки

7.3 Распределение возникающей нагрузки

7.4 Распределение интенсивности нагрузки по направлениям

7.5 Расчет числа входящих и исходящих ИКМ линий

8.Расчет объема оборудования

9. Расчет надежности

9.1 Показатели надежности

9.2 Расчет надежности

9.3 Расчет экспериментального звена сигнализации

10. Оценка качества передачи речевого сигнала по каналам связи и анализ СМО с очередью

10.1 Оценка качества передачи речевого сигнала по каналам связи

10.2 Анализ СМО с накоплением

11. Безопасность жизнедеятельности

11.1 Расчет зануления

11.2 Искусственное освещение

11.3 Автоматические установки пожаротушения

12. Бизнес-план

12.1 Цель проекта

12.2 Рынок

12.3 Объект бизнес-плана

12.4 Услуги

12.5 Клиенты

12.6 Финансовый план

Заключение

Список литературы

1. Анализ текущего состояния сети с. Урджар Восточно-Казахстанской области.

Телефонная сеть Урджарского районного узла телекоммуникаций ВКО.

В настоящее время на сети Урджарского района действуют аналоговые оборудования координатной системы типа АТСК - 100/2000, две станций, одна в селе Урджар, другая в Маканчинском производстве и АТСК - 50/200, шестнадцать станций, которые задействованы в остальных отделениях связи района с центральной станцией.

Общая монтированная ёмкость сети Урджарского РУТ составляет 6150 номеров, задействованная ёмкость-5985 номеров.

Существующие сети АТС построены по шкафной системе с применением прямого питания. Сети сельских АТС построены с применением прямого питания.

Существующая сеть телекоммуникаций в Урджарском РУТ построена по ''узловому методу''. Междугородняя связь осуществляется через АМТС г. Семипалатинска типа ''С&C-08'' (КНР) через аппаратуру уплотнения К-60. Задействовано ВКСЛМ-24канала, ИКЗСЛ-30 каналов. Связь между центральной станцией с. Урджар и оконечными станциями осуществляется с применением системы передачи типа «ДАМА», КНК-12, ИКМ-15, В-3-3С и LBK-12.С Маканчинским производством через «3» На сети Урджарского районного узла телекоммуникаций принята пятизначная нумерация абонентских линий и двузначная нумерация спецслужб.

Таблица 1.1 – Типы, емкости и нумерация существующих АТС

Тип АТС

Населенный

Пункт

Тип станции

Емкость АТС, монтиров.

Емкость АТС, задействован

Нумерация

ЦС-21

с. Урджар

АТСК-100/2000

2000

2000

21-000 – 22-999

ОС-231

с. Бестерек

АТСК-50/200

100

100

23-100 - 23-199

ОС-241

с. Актума

АТСК-50/200

200

200

24-100 - 24-299

ОС-243

с. Кызыл-Ту

АТСК-50/200

50

40

24-300 - 24-349

ОС-245

с.Ново-Андреевка

АТСК-50/200

100

100

24-500 - 24-599

ОС-246

с. Шолпан

АТСК-50/200М

150

135

24-600 - 24-699

24-700 - 24-799

ОС-251

с. Аксаковка

АТСК-50/200М

200

180

25-100 - 25-199

25-200 - 25-299

ОС-253

с. Алтын-Шока

АТСК-50/200

150

130

25-300 - 25-399 25-400 - 25-449

ОС-255

с.Таскескен

АТСК-50/200

200

200

25-500 - 25-599

25-600 - 25-699

ОС-261

с. Ельтай

АТСК-50/200М

150

150

26-100 - 26-199

26-200 – 26-299

ОС-263

с. Жанай

АТСК-50/200

100

90

26-300 - 26-399

ОС-264

с. Каракол

АТСК-50/200М

150

145

26-400 - 26-499

26-700 – 26-799

ОС-265

с. Южный

АТСК-50/200

150

140

26-500 - 26-599

26-600 – 26-699

ОС-271

с. Сегизбай

АТСК-50/200

50

45

27-100 - 26-149

ОС273

с. Кокозек

АТСК-50/200

100

100

27-300 - 27-399

ОС-275

с. Егинсу

АТСК-50/200

100

80

27-500 - 27-599

ОС-281

с. Науалы

АТСК-50/200

200

200

28-100 – 28-199

28-200 – 28-299

УС-310

с. Маканчи

АТСК-100/2000

2000

1950

31-000 – 32-999

Итого

6150

5985

Для повышения качества связи, предоставление абонентам новых видов услуг необходимо произвести замену аналоговой АТС на ЭАТС. Наличие большой численности населения, занятых в основном в сфере животноводства, крестьянских хозяйств и частных предприятий приведет к значительному увеличению числа абонентов. Ожидаемое повышение доходов позволит сократить срок окупаемости сети.

Для более полного удовлетворения потребности населения в услугах связи, потребуется замена физически и морально устаревших ЦС АТСК-100/2000 и ОС АТСК-50/200 на более совершенное цифровое коммутационное оборудование, которое позволит создать не только современную телекоммуникационную сеть, но и предоставит пользователям широкий спектр высококачественных услуг связи.

Модернизацию СТС можно провести в два этапа:

на первом этапе необходимо заменить существующую ЦС АТСК-100/2000 с.Урджар на цифровую станцию;

на втором этапе необходимо заменить аналоговые ОС на цифровую.

В данном проекте предлагается рассмотрение модернизации сети: замена координатной АТСК-100/2000 с.Урджар на цифровую станцию АТС.

Установка цифровой АТС улучшит качество работы и надежность сети, уменьшит занимаемые площади, улучшит качество предоставляемых услуг.

Так как рассматривать замену всех оконечных АТС вместе с центральной в дипломном проекте очень громоздко было предложено рассмотреть только замену АТСК-100/2000 на цифровую АТС.

Таблица 1.2 – Емкость СТС Урджарского района.

Тип АТС

Населенный

пункт

Тип ап-туры уплотнен.

Монтиров.

каналов

Задейств.

Каналов

ЦС

с. Урджар

К-60П

60

58

1-ОС

с. Бестерек

ЛВК-12

12

7

2-ОС

с. Актума

ИКМ-15

15

10

3-ОС

с. Кызыл-Ту

В-3-3Сх2

6

5

4-ОС

с.Ново-Андреевка

«Дама»

6

6

5-ОС

с. Шолпан

ИКМ-15

15

9

6-ОС

с.Аксаковка

ИКМ-15

15

10

7-ОС

с. Алтын-Шока

ЛВК-12

12

9

8-ОС

с. Таскескен

КНК-12

12

12

9-ОС

с. Ельтай

ИКМ-15

15

9

10-ОС

с. Жанай

ИКМ-15

15

7

11-ОС

с. Каракол

ИКМ-15

15

9

12-ОС

с. Южный

ЛВК-12

12

9

13-ОС

с. Сегизбай

В-3-3С

3

3

14-ОС

с. Кокозек

ИКМ-15

15

7

15-ОС

с. Егинсу

ИКМ-15

15

7

16-ОС

с. Науалы

ИКМ-15

15

10

17-УС

с. Маканчи

КНК-12

24

24

Итого

2. Цель и задачи проекта

Целью проекта является – повысить качество связи и рост доходов от предоставления услуг связи на сети СТС с Урджар путем замены устаревшего аналогового оборудования на цифровые ЭАТС. Обеспечение доступа сельского населения к современным телекоммуникационным услугам и равных прав возможностей граждан всей страны в доступе к информации. Устранение дисбаланса между сельскими и городскими населением в отношении уровня жизни, образования и других социальных услуг.

С внедрением новых технологий сократить эксплуатационные расходы и с расширением сети повысить доходы и экономическую окупаемость сети СТС. Улучшить качество услуг связи и обеспечить создание инвестиционных и правовых условий, способствующих сокращению отличия телефонной плотности в сельской местности от среднего городского уровня, ликвидация значительного пробела в информационном обеспечении сельских жителей и производителей сельхозпродукции

3.Постановка задачи

Заменить существующую АТСК 100/2000 на 2000 номеров на электронную АТС SI-2000 емкостью 4000 номеров.

Для решения этой задачи были проработаны следующие вопросы:

а) произведены расчеты нагрузки:

расчет возникающей нагрузки;

распределение возникающей нагрузки;

распределение интенсивности нагрузки по направлениям;

расчет числа входящих и исходящих ИКМ-линий для проектируемой станции.

б) Расчеты по надежности связи:

показатели надежности связи;

расчет надежности;

расчет экспериментального звена сигнализации.

в) Вычисление надежности СМО с накоплением и и определение качества речевого сиггнала:

расчет СМО с накоплением;

расчет качества речевого сигнала.

4 ТЕНДЕНЦИЯ РАЗВИИЯ СТС

4.1 Развитие телефонной связи в сельской местности

На сегодняшний день в сельской местности уровень телефонизации в несколько раза ниже, чем в городе. В первую очередь это объясняется убыточностью сельской телефонной связи (СТС), основными причинами которой являются: удаленность части абонентов от АТС, в результате чего затраты на ее эксплуатацию и развитие в три и семь раз превышают среднегодовые доходы; малочисленность абонентских групп; сложность прогнозирования роста емкости в населенных пунктах, а также другие факторы, не способствующие заинтересованности операторов связи в развитии СТС.

Вместе с тем, анализ показывает, что затраты на телефонизацию села окупаются в два -три раза быстрее, чем города, и если все социальные и экономические факторы при получении доходов операторами связи, пользователями средств связи и обществом в целом (регион, государство) рассматривать в совокупности, то становится очевидным, что рентабельность СТС достигается уже при плотности 14-16 телефонных аппаратов (ТА) на 100 человек. Нельзя сбрасывать со счетов и тот факт, что наличие развитой инфраструктуры сельской связи в большой степени способствует повышению эффективности сельскохозяйственного производства.

В 1965-1991 гг. развитие телефонной связи в Казахстане осуществлялось в соответствии с постановлениями правительства. На начальном этапе более 50 процентов вводимой емкости СТС предназначалось для производственных нужд сельхозпредприятий (СХП). СТС имела статус внутрипроизводственной телефонной связи (ВПТС) и финансировалась из бюджетных ассигнований по отрасли "Сельское хозяйство", а также за счет средств колхозов. При этом объемы телефонизации постоянно увеличивались. Так, если в 1966-1970 гг. было введено 320 тыс. номеров, то в 1985-1990 гг. - более один млн.

Однако прекращение впоследствии выделения средств на телефонизацию села из бюджета, ослабление экономического потенциала сельских товаропроизводителей, отсутствие денег у населения, неопределенность экономической стратегии правительства в кредитовании развития СТС привели к резкому снижению обеспеченности СХП необходимыми средствами связи и прекращению внедрения современных информационных технологий и различных услуг связи. В результате сейчас значительное количество ферм, гаражей, мастерских, зернотоков и других важных производственных объектов не имеет электрических средств связи.

Исходя из того, что наличие необходимых средств телефонной связи СХП является важнейшим условием повышения жизнедеятельности сельского населения и роста производства сельскохозяйственной продукции, что отсутствие этих средств не позволит преодолеть кризисное состояние в агропромышленном комплексе (АПК), правительству, Минсельхозу и Минсвязи совместно с правительствами и администрациями субъектов Республики Казахстан, а также с другими заинтересованными министерствами и ведомствами необходимо незамедлительно решить вопросы, связанные с ускорением развития СТС в ближайшие годы. В качестве первого шага должна быть принята программа развития телефонной связи в сельской местности, которая позволит создать в АПК гибкую и экономичную информационную структуру, охватывающую все звенья производства и переработки сельскохозяйственной продукции и предоставляющую управленческим структурам и населению новые информационные услуги.

Одной из основных задач региональных предприятий связи и СХП должна стать отработка механизма инвестирования в развитие телекоммуникационных сетей, а следствием его реализации последовательный рост доходности телефонной сети и района в целом благодаря увеличению количества и видов услуг связи и информатизации, окупаемых за счет увеличения производства сельскохозяйственной продукции. В этой связи необходимо решить три основные задачи:

экономи­ческую

техническую

организационную

Экономическая задача региональных операторов связи заключается в разработке соответствующих управленческих функций по определению потребностей пользователей в информационных услугах на ближайшие пять-семь лет и их внедрении в соответствии со складывающимися экономическими условиями. Возникает необходимость ориентации их на разработку сбалансированного по доходам и расходам бизнес-плана, а также получение запланированного дохода и инвестиционной привлекательности создаваемых СТС. Решение экономических задач при телефонизации села должно осуществляться АО

« Казахтелеком» в тесном контакте с соответствующими финансовыми службами правительств и администраций субъектов Республики Казахстан, сельхозорганами и главами районных администраций в соответствии с ежегодным планом выделения бюджетных ассигнований, утверждаемых госсобраниями или областными регионов.

На повестке дня всех региональных и районных администраций и сельхозорганов должен стоять вопрос о механизме выделения бюджетных и внебюджетных средств на долевое участие в строительстве СТС как основы социального развития села и подъема АПК.

Технические задачи.

Решая экономическую задачу телефонизации сельской местности, следует обратить особое внимание на несовершенство отдельных технических решений организации связи, затрудняющих предоставление сельским товаропроизводителям и населению услуг связи.

Как показал анализ модернизации СТС, в ряде регионов нет даже плана развития сети (расширения зоны обслуживания, сервисных требований, способов распределения абонентов, предполагаемого роста графиков и др.) на ближайшие пять-семь лет. А технический фактор играет доминирующую роль в улучшении экономических показателей развития и эксплуатации СТС. Недооценка или недопонимание важности разработки технологии развития сети на перспективу и его технико-экономического обоснования не позволяет экономично проводить телефонизацию в сельской местности. Применение традиционных технологий телефонизации со структурой центральная - узловая - оконечная АТС (даже при использовании цифровых АТС) не может обеспечить безубыточную эксплуатацию сетей связи при телефонной плотности.

В развитых странах радиодоступ широко используется в сельской местности, когда требуется установка новых телефонов или предоставление абонентам новых услуг связи при отсутствии абонентских линий или невозможности увеличения пропускной способности сети. Выбор технологий и стандартов радиодоступа - один из важнейших вопросов при организации радиотелефонной связи на селе и в особенности на территориях с низкой плотностью населения.

Существует множество систем радиодоступа, различающихся по назначению, способам взаимодействия с опорной АТС, частотному спектру, видам модуляции, начальной и конечной емкости и др. От этих параметров системы зависит количество и качество предоставляемых услуг, а значит, и стоимость ввода номера.

4.2 Связь в сельской местности

Эффективная электросвязь является важным аспектом для экономического благосостояния сельских районов. Регионы с низкой плотностью населения занимает значительную часть территории Казахстана.

Для экономического развития и эффективности сельской связи необходимо детальное планирование с привлечением соответствующего оборудования, технологий и экономических методов, начиная с построения на базе существующей телефонной сети станции и создания плана построения сельской сети, который был бы достаточна гибким, чтобы отвечать изменениям потребностей в емкости, видах обслуживания, месторасположении и достижениях в технологии, когда они станут доступными.

Существует несколько путей развития связи в сельской местности:

Внедрение цифрового оборудования коммутации и стандартных цифровых систем передачи;

Использование в труднодоступных и малонаселенных районах, где телефонизация традиционными методами затруднена и экономически неэффективна, радиотелефонных, космических средсв связи и радиорелейных линий.

4.3 Модернизация сельской сети

Модернизация существующих сельских АТС (САТС) проводиться с целью улучшения качества связи при минимальных капитальных вложениях сводиться в основном к замене оборудования с наименьшей степенью возможности. Кроме того, производиться замена аналоговых систем передачи на цифровые, в результате чего межстанционный обмен осуществляется по каналам ИКМ-30 или ИКМ-15 вводиться автоматический учет стоимости соединений (АПУС) оборудования диагностики САТС, внедряется или заменяется автоматическим определениям номера (АОН) Однако модернизация существующих САТС не решает таких важных проблем как увеличения номерной емкости и внедрения новых видов услуг традиционных (местная и междугородняя связь, экстренные заказные и информационные справочные службы ДВО, услуги ISDN) и порожденных новыми технологиями ( передача данных, доступ в Интернет).

Для решения этих проблем необходимо внедрение на СТС нового поколения цифровых АТС, а также построение абонентской сети доступа и высокоскоростных первичных сетей.

Рассмотрим основные этапы цифровизации СТС.

Первый этап

В начала 90-х годов прошлого века на телефонных сетях Казахстана началось внедрение САТС. В связи с тем, что цифровая АТС должна обеспечивать взаимодействие со всеми существующими на СТС типами телефонных станций а также сельского района ведомственными и коммерческими сетями.

Обязательным требованием к цифровым САТС является реализация функции АОН с использованием сигнализации многочастотным кодом методом “безинтервальный пакет” для обеспечения автоматической междугородней связи и вызова служб местной телефонной сети без набора собственного номера.

Запрос АОН может поступить на различных этапах соединения от входящей стороны АМТС, УСС, функции которого может выполнять ЦС или от АТС местной сети. Помимо функции АОН к спец физическим службам обслуживания вызовов на ТФОП можно отнести необходимость приоритета необходимость обеспечения приоритета междугородних вызовов поступающих по междугородним (СЛМ), над местными. Для этого САТС должна обеспечивать:

подключение междугородней телефонистки к занятому абоненту в последнее время (предполагается заменить на алгоритм, аналогичной услуге (Call Waiting);

возможность отказа вызываемого абонента от местного соединения в пользу междугороднего;

обработку повторного вызова от междугородней телефонистки.

Освобождение соединения, установленного по СЛМ, только со стороны междугородней станции. Несмотря на наличие ОТТ на все типы САТС, требования предъявляемые к центральным станциям (ЦС) СТС и к узлам сельско- пригородной связи (УСП), значительно отличаются от требования к оконечным (ОС) и узловым (УС). ЦС, УСП устанавливаемые в районном центре строиться на базе мощных коммутационных платформ известных производителей и характеризуется сложной архитектурой аппаратных средств и программного обеспечения (ПО), которые обеспечивают:

высокую надежность оборудования (резервирования основных блоков);

значительную емкость.

Емкость обслуживаемая нагрузка и производительность управляющих устройств ЦС, УСП должны быть достаточны для обслуживания абонентов всей СТС. В настоящее время СТС строиться в пределах одного административного района. Однако при переходе к перспективной сети предполагается обслуживания одной СТС и нескольких административных районов.

В связи с этим установка ЦС, УСП недостаточной емкости может оказаться не перспективным решением, не позволяющим без значительных дополнительных затрат расширять существующую СТС и объединить местные телефонные сети различных сельских административных районов в одну более крупную, что также будет содержать процесс цифровизации и внедрения перспективных технологий.

Требования по надежности, предъявляемые к ЦС и УСП должны быть выше, чем к ГАТС, поскольку выход из строя ЦС И УСП приведет абонентов СТС к потере возможности установления, как внешних соединений, так и значительной части соединений в пределах самой СТС.

К САТС, используемым в качестве ЦС И УСП, дополнительно предъявляются требования по взаимодействию с АМТС по ЗСЛ и СЛМ внутризоновой сети и с информационными, справочными, экстренными службами сельско - административного района.

Это может потребовать наличия дополнительных интерфейсов и протоколов сигнализации (линейной по частоте 2600 Гц по цифровым или по физическим четырех проводным ЗСЛ, СЛМ; линейной по трех-проводным физическим соединительным линиям, регистровой многочастотным кодом методом “импульсный пакет”).Требуется реализация интерфейсов с ЦТЭ, АСР. Допускается совмещение функций ЦС (возможно УСП) и УСС.

В связи с тем, что на СТС до сих пор сохраняется необходимость полуавтоматической связи, ЦС должна обеспечивать возможность взаимодействия с МТС райцентра. Существующие МТС целесообразно заменить на электронное оборудование рабочих мест телефонистов, входящее в состав ЦС или поставляемое отдельно подключающиеся к ЦС по тракту ИКМ.

Иные требования предъявляются к УС и ОС, устанавливаемой в любом населенном пункте. В первую очередь, это дешевизна оборудования и возможность работы в необслуживаемом режиме (дистанционное техобслуживание и эксплуатация).

Кроме САТС на селе находят применение системы оперативно диспечерской связи и УПАТС. Сегодня большинство существующих аналоговых пультов связи морально устарело и физически изношены.

Современные цифровые станции приняли на себя часть нагрузки оперативной связи. Системы оперативной диспечерской связи имеют различные модификации: от простых систем типа “Директор секретарь” до сложных отличающихся гибкостью и большим количеством дополнительных функций.

Рассмотрим различные стратегии цифровизации сельских сетей, и их преимущества и недостатки.

Стратегии цифровизации и с сохранением старой ЦС

В реальных проектах цифровизации СТС часто осуществляется “снизу” и предполагает в первую очередь замену ОС или УС на цифровые в то время как оператора связи в качестве ЦС или УСП по ряду причин устраивает существующая станция:

ЦС расположено в крупном населенном пункте и проблемы ее техобслуживания и эксплуатации решаются проще чем для станции, расположенных в небольших населенных пунктах;

в связи с повышенным надежности в качестве ЦС/ УСП операторы хотят видеть продукции известных отечественных или иностранных производителей;

замена ЦС/УСП потребует значительных капиталовложений.

4.4 Современные требования к модернизации СТС

Модернизируемая сельская сеть предполагает: использование цифровых АТС большей, чем в настоящее время, емкости в сочетании с необслуживаемыми абонентскими выносами.

Современные сети строятся с использованием удаленных концентраторов, соединенных с базовыми или основными АТС с помощью радиорелейных, волоконных и спутниковых соединительных линий. На современных сетях связи цифровой поток информации должен доводится непосредственно до абонента.

Модернизация сельской связи предполагает помимо замены коммутационного оборудования, модернизацию первичной сети с использованием как проводных, так и беспроводных систем передачи (радиорелейных), обеспечивающих возможность организации стандартных ИКМ-трактов со скоростью передачи 2048 кбит/с;

При нехватке финансовых средств должен предусматриваться вариант временной неполной модернизации.

Вариантом неполной модернизации является одновременная работа двух ЦС: подлежащей демонтажу старой и вновь вводимой цифровой, а также замена отработавших и наиболее ненадежных блоков электронными аналогами. Например, замена РА на электронный регистр РЭ для АТСК 100/2000. Замена релейных комплектов ИШК на электронные для предотвращения искажения своего номера со стороны АМТС (подмена АОН). Такие случаи имели место, недобросовестные абоненты искажали свой номер и предъявить счет за переговоры не получалось. Однако для изношенных АТС, а также для тех, где желательно добиться резкого повышения качества связи, желательна радикальная модернизация. Дело в том, что электронные аналоги релейных приборов вынужденно имеют существенную избыточность, связанную с сопряжением внутренних уровней сигналов электронных блоков с уровнями релейных приборов. Добавим еще блок питания и корпус для каждого прибора и увидим, что все это приводит к заметному удорожанию полного блочного переоснащения АТС по сравнению с полной модернизацией. К сожалению, пока такой вариант никем до промышленного выпуска не доведен.

Требования к структуре:

Структура СТС по возможности должна обеспечивать переход от радиально-узловой к радиальной (одноуровневой) структуре телефонной сети с включением ОС и оборудования абонентского доступа преимущественно в ЦС с организацией новых и расширением существующих поперечных связей между ОС. Одноступенчатая схема построения СТС (без УС) повышает надежность и уменьшает время установления соединения и, следовательно, является более перспективной. Двух ступенчатое построение сохраняется при условии технико-экономической целесообразности узлообразования. Для повышения надежности связи в СТС может применяться кольцевая структура первичной сети. Из-за большой территории, охватываемой одной сельской телефонной сетью, непосредственное включение всех абонентских линий в одну или несколько станций расположенных в райцентре экономически не оправдано. Поэтому на СТС применяют районирование и узлообразование с различной степенью децентрализации станционного оборудования (распределенная структура).

Требования к структуре СТС, рассмотренные выше, сохраняются при модернизации сельских сетей, что связано, в основном, с высокими затратами на создание и эксплуатацию цифровой первичной сети и малым тяготением между собой станций, установленных в различных населенных пунктах сельского района. На реальных сетях рассмотренные структуры обычно комбинируются в зависимости от конкретных условий: размещения станций на территории района, его площади, ёмкости станций.

Требования к сельским коммутационным станциям :

Требования, предъявляемые к используемому для модернизации сельских районов коммутационному оборудованию, в значительной степени обусловлены не только географическими особенностями и исторически сложившейся структурой сельских телефонных сетей (СТС), но и принятыми алгоритмами обслуживания вызовов для обеспечения приоритета междугородных соединений над местными и передачи информации АОН. В связи с повышенными требованиями к надежности сетей операторы хотят видеть в качестве ЦС продукцию известных иностранных производителей.

При сохранении существующих систем передачи и межстанционной сигнализации, вновь вводимая ЦС должна поддерживать существующие на сети интерфейсы и протоколы.

Сельская коммутационная станция должна удовлетворять всем требованиям (по емкости с учетом перспективы развития, набору протоколов сигнализации) и иметь сертификат соответствия, допускающий ее использование в качестве ЦС.

Требования к сетям абонентского доступа

Для существующей системы электросвязи, сеть абонентского доступа это совокупность АЛ. Госкомсвязи ввел в действие с первого января 1998 г. стандарт отрасли 45.83-96 «Сеть телефонная сельская, линии абонентские, нормы эксплуатационные». Стандартом устанавливаются нормы электрических параметров на постоянном и переменном токах цепей АЛ и их элементов, обеспечивающих функционирование.

Систем телефонной связи:

систем телеграфной связи, включая службы телеграфной связи общего пользования, абонентского телеграфа, телекса;

телепатических служб, включая службы факсимильной связи, видеотекста, электронной почты, обработки сообщений;

систем передачи данных;

систем распределения программ звукового вещание;

цифровых систем с интеграцией обслуживания.

Нормирование электрических параметров цепей АЛ в стандарте дано с учетом их старения в течение срока службы.

Требования настоящего стандарта должны учитываться при эксплуатации, проектировании, строительстве новых и реконструкции существующих линий сельских телефонных сетей.

Структура построения АЛ СТС предусматривает:

магистральный участок (от кросса АТС до распределительного шкафа);

распределительный участок (от распределительного шкафа до распределительной коробки);

абонентскую проводку (от распределительной коробки или кабельного ящика до розетки телефонного аппарата).

Применяются также линии прямого соединения от кросса АТС до абонента. На АЛ СТС применяют абонентские высокочастотные установки с частотным разделением каналов. абонентские цифровые концентраторы и мультиплексоры.

Для АЛ СТС применяют:

кабели типа ТПП с медными жилами диаметром 0,32, 0,4 и 0,5 мм с полиэтиленовой изоляцией и в полиэтиленовой оболочке;

кабели типа ТГ с медными жилами диаметром 0,4 и 0,5 мм с бумажной изоляцией и в свинцовой оболочке;

мало парные кабели типа КТПЗШп с медными жилами диаметром 0.64 мм с полиэтиленовой изоляцией, гидрофобным заполнением сердечника и в полиэтиленовой оболочке

однопарные кабели типа ПРППМ с медными жилами диаметром 0,9 и 1,2 мм с полиэтиленовой изоляцией;

стальные цепи воздушных и смешанных линий связи.

Абонентская проводка выполняется однопарными проводами типа ТРП и ТРВ. Соединения в кроссах и распределительных шкафах выполняются кроссировочными проводами ПКСВ с диаметром медных жил 0,4 и 0,5 мм. Для групп удаленных абонентов предусматривается применение аналоговых концентраторов. На участке от АТС до аналоговых концентраторов применяют кабели типа ТПП, КТПЗШп, КСПЗП, воздушные и смешанные линии связи.

На участке от концентратора до абонента применяют кабели ПРППМ, ТПР, воздушные и смешанные линии связи.

Основные требования к системам абонентского радиодоступа для сельской местности:

организация качественной и ус­тойчивой связи на больших тер­риториях с низкой плотностью населения (от 1 до 5 чел/км2) в сетях, обслуживающих от 30 до 240 абонентов;

вынос базовых станций (БС) по ка­бельным каналам связи на расстоя­ние до 20 км;

организация в районных центрах не­больших зон локальной мобильности;

вынос абонентского оборудования на расстояние до 10 км от БС;

возможность удаленного управле­ния и мониторинга аппаратуры дос­тупа из регионального центра;

возможность модульного наращива­ния систем;

обеспечение передачи данных со скоростью 32 кбит/с для организа­ции доступа в Интернет и использо­вания приложений телемедицины;

низкая стоимость оборудования при небольших эксплуатационных затратах.

Для обеспечения устойчивой и каче­ственной передачи малых объемов тра­фика на больших территориях с низ­кой плотностью населения можно ис­пользовать системное построение, объ­единяющее контроллер БС, который формирует один поток Е1, направляе­мый к опорной АТС (тип сигнализации EDSS1 или V5.2), малоканальные БС (4-6 каналов) и радиорепитеры. Вынос базо­вых станций по кабельным каналам связи на расстояние до 20 км осуществ­ляется с помощью технологии MDSL или G.SHDSL. При построении систем связи в линейно протяженных населен­ных пунктах нужно предусмотреть в БС возможность мультиплексирова­ния каналов.

4.5 Цифровизация сельской связи: вопросы коммутации

Требования, предъявляемые к используемому для теле­фонизации сельских районов коммутационному оборудо­ванию, в значительной степени обусловлены не только географическими особенностями и исторически сложив­шейся структурой отечественных сельских телефонных сетей (СТС), но и принятыми алгоритмами обслуживания вызовов для обеспечения приоритета междугородных со­единений над местными и передачи информации АОН. Именно с этих, сугубо прагматических позиций авторы статьи и попытались рассмотреть проблемы систем коммутации для реальных СТС.

Традиционное построение СТС

Исторически так сложилось, что в Казахстане СТС создавалась в пределах сельского административного рай­она. В связи с низкой плотностью на­селения в сельской местности для по­строения СТС требовалось значи­тельное количество коммутационных систем малой емкости для концентра­ции телефонной нагрузки в местах скопления абонентов (населенных пунктах).

Принятые для построения СТС радиальная (одноступенчатое по­строение) или радиально-узловая (одно-, двухступенчатое построе­ние) структуры с возможностью ор­ганизации поперечных связей пред­полагают наличие следующих типов станций, различающихся способом включения и выполняемыми функ­циями:

центральная станция (ЦС), устана­вливающаяся в районном центре и выполняющая одновременно функции телефонной станции рай­центра и транзитного узла СТС;

узловая станция (УС), использую­щаяся только при радиально-узловом построении сети и устанавлива­ющаяся в любых населенных пунк­тах сельского района;

оконечная станция (ОС), устанав­ливающаяся в любых населенных пунктах сельского района.

К сельским станциям также отно­сятся узлы сельско-пригородной свя­зи (У СП), предназначенные для орга­низации транзитной связи на комби­нированных (сельско-пригородных) местных телефонных сетях.

Таблица 4.5  Межстанционные интерфейсы САТС

Название

Тип интерфейса

Примечание

Интерфейсы с цифровыми СЛ:- А

2048 кбит/с 1024кбит/с

обязательный тип необязательный тип

Интерфейсы с аналоговыми СЛ:

- С2, С1-С22

4-, 6-, 8-проводный с системами передачи с физическими 3-проводными СЛ

необязательный тип (для взаи­модействия с аналоговыми АТС)

УСП ис­пользуется в тех случаях, когда ем­кость телефонной сети райцентра дос­таточно велика и не может быть обслу­жена одной ЦС. В этом случае в рай­центре организуется районированная телефонная сеть, а УСП включается в нее в качестве транзитного узла.

УСП устанавливает связь как между станциями СТС, так и со станциями го­родской телефонной сети (ГТС). Через УСП должна обеспечиваться исходя­щая и входящая междугородная связь абонентов СТС (а иногда и абонентов ГТС), а также связь со спецслужбами.

ЦС обеспечивает установление око­нечных и транзитных соединений ме­жду абонентами местной (сельской) телефонной сети. Через ЦС осуществляется связь абонентов сельского района с МТС, АМТС и спецслужбами райцентра. Через УС осуществляется установ­ление следующих соединений: око­нечных и транзитных между абонен­тами ОС, ОС и ЦС, а также выход ОС и УС к АМТС.

В ЦС, УС и ОС включаются або­ненты с использованием аналоговых абонентских линий, линий ISDN BRI и PRI, интерфейса V5.

Интерфейсы и протоколы сигнализации САТС

САТС должна обеспечивать взаи­модействие со всеми существующими на СТС типами, телефонных станций, а также с организованными на терри­тории сельского района ведомствен­ными и коммерческими сетями, кото­рые включаются в СТС, как правило, на правах УПАТС. В связи с этим к САТС предъявляются требования наличия значительного набора интер­фейсов и протоколов сигнализации, принятых на ТфОП.

Выбор системы сигнализации.

Выбор системы сигнализации для взаимодействия вновь устанавливае­мой АТС с другими станциями опреде­ляется в основном реальной проектной прагматикой той СТС, на которой бу­дет устанавливаться цифровая САТС.

Согласно требованиям нормативных документов, например РД 45.120-2000 "Нормы технологического проектиро­вания" (НТП), на СТС между вновь вводимыми цифровыми станциями при наличии между ними более одного тра­кта ИКМ должна использоваться сиг­нализация ОКС-7. Во всех осталь­ных случаях применение ОКС-7 не­обязательно или вообще невозможно. При взаимодействии вновь устанавли­ваемой станции с уже существующими цифровыми САТС ОКС-7 внедряет­ся после замены версии на действую­щих цифровых станциях. В отличие от ГТС, на СТС возможно несколько пе­реходов "аналог - цифра - аналог" и нередки случаи, когда между двумя ЦАТС нет "сквозного" стандартного тракта ИКМ или они подключаются к СТС с использованием аналоговых ин­терфейсов.

Преимущество использования сиг­нализации ОКС-7 на СТС состоит в возможности организации двусто­ронних соединительных линий (СЛ), а также в поддержке сложившихся алгоритмов обслуживания и требова­ний операторов связи.

Таблица 4.6  Межстанционная сигнализация САТС

Тип сигнализации

Примечание

ОКС-7 (МТР,13иР)

Обязательный тип

Линейные сигналы:

по 2ВСК односторонних СЛ;

по 2ВСК двусторонних универсальный;

no 1BCK "индуктивным кодом" ;

по 1BCK кодом "Норка";

батарейным способом по физическим трех-проводным СЛ;

на частоте 2600 Гц.

Необязательные типы:

с раздельным использованием для местных и междугородных соединений только на участках местной сети: ОС-ЦС,ОС-УС,УС-ЦС для взаимодействия с аналоговыми АТС только на участке внутризоновой сети АМТС-ЦС/УСП

Сигналы управления:

декадный код

"импульсный челнок"

"безинтервальный пакет" (функции АОН)

"импульсный пакет"

кции АОН)

при установлении соединения к АМТС

При выборе типа линейной сигна­лизации предпочтение следует отда­вать сигнальным кодам, использую­щим два выделенных сигнальных ка­нала (2ВСК), однако часто единст­венным технически возможным реше­нием является использование сигна­лизации по одному выделенному сиг­нальному каналу (1BCK). Это может быть обусловлено как использовани­ем морально устаревших систем пере­дачи, позволяющих организовать только 1BCK, так и применяемыми на данной СТС комплектами СК. Комплекты кода по 2ВСК двусто­ронних универсальных СЛ были в свое время разработаны для сель­ских станций типа А'ГСК-50/200, АТСК-50/200М и АТСК-100/2000 и позволяли организовать взаимодей­ствие станций данного типа между со­бой и со станциями следующих поко­лений и элек­тронными) по двусторонним универ­сальным СЛ. Однако эти станции долгое время внедрялись с более де­шевыми комплектами индуктивного кода, обеспечивающими взаимодейст­вие с уже существовавшими тогда ав­томатическими станциями предыду­щих поколений (АТС-50/100, АТС-ВРС-20М, АТС-10/40, АТС-40/80).

Способ передачи номера вызывае­мого абонента многочастотным кодом методом "импульсный челнок" приме­ним на СТС только для взаимодейст­вия электронных/квазиэлектронных станций между собой и с ЦС, У СП ко­ординатной системы городского типа (АТСК, АТСКУ) или электронной/квазиэлектронной. Во всех ос­тальных случаях, то есть при взаимо­действии между наиболее распростра­ненными на СТС станциями АТСК-50/200, АТСК-100/2000, передача номера вызываемого абонента осуще­ствляется декадным кодом.

Практически повсеместно на СТС реализованы функции АОН с исполь­зованием сигнализации многочастот­ным кодом методом "безинтерваль­ный пакет" для обеспечения автомати­ческой междугородной связи и вызо­ва служб местной телефонной сети без использования процедуры набора собственного номера.

Таблица 4.7  Интерфейс абонентского доступа

Тип интерфейса

Тип сигнализации

Цифровой:

-V1-У3(2048кбит/с);

-V5 (2048 кбит/с).

DSS-1 DSS-1 DSS-1 илиТфОП

Аналоговый: -Z

Сигнализация по анало­говой абонентской линии

4.6 Требования к параметрам оборудования

1.6.1 Мультисервисная сеть ENGINE компании Эрикссон

Мультисервисная сеть следующего поколения – вот то, чем заняты мысли специалистов в области телекоммуникации во всем мире. Сейчас очень трудно сказать, на что будут похожи мультисервисные сети. Обычная телефонная связь, сотовая связь, огромные ресурсы сети Интернет, IP-телефония, кабельное телевидение – все это должно быть объединенно в единную архитектуру. Мультисервисных сетях нового поколения будет передоваться и обрабатываться трафик разных видов, можно выделить три направления работ:

новые телекоммуникационные услуги с универсальным доступом из ТФОП/ISDN и IP-сетей;

новые подходы к проблеме качества обслуживания, однако работы в этом направление затрудняет отсутствие согласованной структуры мультисервисной сети следующего поколения;

проблема сигнализации и управления в мультисервисной сети

Мультисервисная сеть.

Компания Эрикссон, одна из первых, еще в 1999г. представила решение для построения мультисервисных сетей под названием ENGINE. Сегодня мультисервисные сети ENGINE работают более чем в 60 операторских компаниях, в том числе в таких авторитетных, как British Telecom ,WorldCom, France Telecom и Telia.

Концепция мультисервисной сети ENGINE Integral предусматривает разделение сети на следующие три уровня:

уровень услуг, где размещается серверы услуг интеллектуальной сети, взаимодействующие с нижележащем уровне посредством стандартизированных интерфейсов;

уровень управления соединения, на котором располагаются серверы, осуществляющие управление телефонным соединением;

уровень обеспечения соединения, где располагаются так называемые медиа-шлюзы, служащие для преобразования трафика, поступающие от различного оборудования доступа.

В качестве последнего может выступать как традиционное оборудование, так и оборудование передачи данных.

Транспортная сеть.

В течении 1996 г. компанией была построена волоконно-оптическая транспортная сеть SDH (синхронная цифровая иерархия), охватывающая всю территорию Казахстан и имеющая большое узлов ввода- вывода с установленными там мультиплексорами. Транспортная сеть позволила решить сразу несколько проблем, связанных с улучшением телефонных услуг компании, и создала базу для организации целого ряда наложенных телекоммуникационных сетей: цифровой телефонной, интеллектуальной, передачи данных, доступа в Интернет.

Транспортная сеть SDH АО “Казахтелеком” использует современное оборудование производства компании ECI и имеет многокольцевую структуру. Благодаря стратегии комплексного развития и применения самого современного оборудования может предоставлять своим пользователям услуги не только высокого качества и широкой номенклатуры.

5 Выбор цифровой системы коммутации

При проектированной новой АТС практически всегда ставится вопрос о выборе оборудования.

В настоящее время из-за большой насыщенности рынка телекоммуникаций различными системами, имеющими примерно одинаковые технические характеристики, проблема выбора престает быть чисто технико-экономической задачей и приобретает компонент, определяемый политикой в отношении поставщиков.

Для выбора на рынке оборудования связи коммутационной системы наиболее подходящей для реализации данного проекта произведем сравнение трех возможных вариантов цифровых коммутационных систем, которые могут быть использованы для проектирования сельской телефонной сети (СТС)

Рассмотрим возможные варианты ЦСК:SI200, DRX-4, DX-200.

Сравнение этих систем будем осуществлять по следующим показателям:

стоимость;

пропускная способность;

согласование с другими системами;

трудоемкость обслуживания (с ЦТЭ);

занимаемая площадь.

Метод иерархией – это математический аппарат, который разработан для решения задач многокритериальной оптимизации, который в отличие от традиционных методов позволяет принять компромиссное решение [2].

Решение постановленной задачи (выбора системы) с помощью МАИ осуществляется в несколько этапов:

а) представление задачи в иерархической форме:

б) Установление приоритетов критериев.

Для установления приоритетов критериев проводятся попарное сравнение критериев по отношению к общей цели, результаты сравнения заносятся в матрицу.

В таблицах 5.1 и 5.2 приведены шкала оценок интенсивности относительной важности и сравнение критериев по отношению к общей цели.

Таблица 5.1 – Шкала оценок интенсивности относительной важности

Интенсивность относительной важности

Определение

1

Значит равную важность элементов

3

Умеренное превосходство одного над другим

5

Существенное или сильное превосходство

7

Значительное превосходство

9

Очень сильное превосходство

2,4,6,8

Промежуточные решения между соседними суждениями

Обратные величины приведенных чисел

Если при сравнении одного деятельности с другим получило одно из вышеуказанных чисел, то при сравнении второго вида деятельности с первым получим обратную величину

Таблица 5.2 – Матрица 1: сравнение критериев по отношению к общей цели

1

2

3

4

5

_

аi

_

xi

Ранги

1

1

3

¼

2

4

2

2

1/3

1

½

½

2

0,61

0,1

4

3

2

4

1

3

4

2,49

0,41

1

4

½

2

1/3

1

3

1

0,16

3

5

1/4

1/2

1/4

1/3

1

0,4

0,07

5

а

6,14

Также матрицы составляются для сравнения попарно альтернатив по отношению к каждому из критериев.

Матрицы 2…6 (таблицы 5.3-5.7): оценки предпочтительности ЦСК по разным критериям, где альтернатива A-DX-200, альтернатива Б-DRX4, альтернатива B-SI2000.

Таблица 5.3 – Матрица 2. Критерий – стоимость

Альтернатива

_аi

_xi

Ранг

А

Б

В

А

1

1/3

1/3

0,48

0,14

3

Б

3

1

2

1,82

0,53

1

В

3

1/2

1

1,14

0,38

2

Таблица 5.4 – Матрица 3. Критерий – пропускания способность

Альтернатива

_аi

_xi

Ранг

А

Б

В

А

1

1/3

3

1

0,26

2

Б

3

1

5

2,47

0,64

1

В

1/3

1/5

1

0,41

0,11

3

Таблица 5.5 – Матрица 4. Критерий – согласования с другими системами

Альтернатива

_аi

_xi

Ранг

А

Б

В

А

1

1/4

1/4

0,4

0,112

3

Б

4

1

1

1,59

0,444

1,5

В

4

1

1

1,59

0,444

1,5

Таблица 5.6 – Матрица 5. Критерий – трудоемкость обслуживания

Альтернатива

_аi

_xi

Ранг

А

Б

В

А

1

1

3

1,44

0,43

1,5

Б

1

1

3

1,44

0,43

1,5

В

1/3

1/3

1

0,48

0,14

3

Таблица 5.7 – Матрица 6. Критерий – Занимаемая площадь

Альтернатива

_аi

_xi

Ранг

А

Б

В

А

1

1/3

1/2

0,55

0,16

3

Б

3

1

2

1,82

0,54

1

Альтернатива

_аi

_xi

Ранг

А

Б

В

В

2

1/2

1

1

0,3

2

В) Определение локальных приоритетов.

В результате устанавливается важность каждого из элементов по отношению к вышестоящим уровняю.

Для каждого из элементов, оцениваемых в матрице по строке находится средняя оценка интенсивности относительной важности: средняя геометрическая величина:

ā i= ā i1* ā i5+…. ā m (5.1)

Проводится нормализация результата к единице: сначала находится сумма всех средних оценок важности и затем каждая из них делится на эту сумму:

(5.2)

в) определение глобальных приоритетов.

Для каждой альтернативы находится сумма произведений локального приоритета данной альтернативы по каждому из критерием на приоритет соответствующего критерии по отношению к вышестоящему уровню:

(5.3)

где n – количество критериев;

ХАк – локальны приоритет альтернативы А по к - ому критерию;

ХК - локальны приоритет k-ого критерия.

Результаты расчета сведены в таблицу 3.8 глобальных приоритетов.

Таблица 1.8 - Оценка глобальных приоритов

Альтернатива

Критерий

0,24

20,1

30,42

40,15

50,09

Приоритеты

Ранги

А

0,12

0,25

0,112

0,43

0,16

0,18

1

Б

0,32

0,66

0,444

0,43

0,54

0,44

2

В

0,56

0,09

0,444

0,14

0,3

0,38

3

Проведенные расчеты показывают, что наиболее предпочтительным вариантом является вариант Б, то есть проектирование объекта на базе цифровой коммутационной системы SI2000.

Для реализации данного проекта было принято решение использовать цифровую коммутационную систему (ЦКС) SI2000 производства фирмы IskraTEL (Словения) совместно с предприятиям Искра Урал Tek (Екатеринбург). Компании SIEMENS, на основе анализа по методу иерархий (МАИ) [2] в сравнении с системами DRX4 и DX-200.

6 Основные характеристики SI-2000

6.1 Характеристика АТС типа SI-2000

SI-2000 – это современная цифровая коммутационная система с управлением по записанной программе, предназначенная для использования на ТфОП. Цифровые станции SI-2000 могут использоваться в качестве местных или транзитных АТС на сетях связи общего пользования или ведомственных сетях

Основные характеристики станции:

Емкость станции:

до 40000 абонентов;

до 3720 линейных комплектов или каналов на междугородних станциях;

128 модулей (разговорные и системные);

до 124 разговорных модулей (ASM, LSM, ANM, DNM);

любая комбинация модулей ASM, LSM, ANM, DNM до общего количества 124;

емкость модуля ASM – до 239 абонентов;

емкость модуля LSM – до 239 абонентов посредством блока DLX;

емкость модуля ANM – до 30 аналоговых линейных комплектов;

емкость модуля DNM – до 30 цифровых каналов;

минимальный шаг наращивания абонентских комплектов - 8;

минимальный шаг наращивания аналоговых линейных комплектов - 4;

минимальный шаг наращивания цифровых линейных комплектов – 30.

6.2 Аппаратное обеспечение

Аппаратное обеспечение представляет собой физические элементы системы. В современной коммутационной системе, такой как SI2000, аппаратное обеспечение построено по модульному принципу, что обеспечивает надежность и гибкость системы.

Аппаратные средства (АС) подразделяются на подсистемы. Семь основных подсистем составляют основу SI2000

К ним относятся:

групповой переключатель GSM (Group Switch Module);

административный модуль ADM (Administration Module);

тарифный модуль CHM (Charging Module);

аналоговый абонентский модуль ASM (Analog sub>scriber Module);

удаленный абонентский модуль RASM (Remote ASM);

модуль абонентских концентраторов LSM (line Concentrator Module);

аналоговый сетевой модуль ANM (Analog Network Module);

удаленный аналоговый сетевой модуль RANM (Remote ANM);

цифровой сетевой модуль DNM (Digital Network Module).

Каждая подсистема имеет, по крайней мере, один собственный микропроцессор. Принцип распределенного управления в системе обеспечивает распределение функций между отдельными ее частями с целью обеспечения равномерного распределения нагрузки и минимизации потоков информации между отдельными подсистемами.

Устройства управления подсистемами независимо друг от друга выполняют практически все задачи, возникающие в их зоне.

6.3 Программное обеспечение.

Программное обеспечение (ПО) организовано с ориентацией на выполнение определенных задач соответствующих подсистемам SI2000. Внутри подсистемы ПО имеет функциональную структуру. Операционная система (ОС) состоит из программ, приближенных к аппаратным средствам. Программы пользователя варьируются в зависимости от конфигурации станции. Современная автоматизированная технология, жесткие правила разработки ПО, а также язык программирования CHILL (в соответствии с рекомендациями МККТТ) обеспечивают функциональную ориентированность программ, а также поэтапный контроль процесса их разработки.

6.4 Механическая конструкция

Механическая конструкция обеспечивает простой и быстрый монтаж, экономичное техобслуживание и гибкое расширение системы. Ее главными блоками являются:

съемные модули стандартизированных размеров;

модульные кассеты, в которых модули устанавливаются с передней стороны, а кабели с задней;

стативы с защитной обшивкой, организованные в стативные ряды;

съемные кабели, изготовленные требуемой длины, оснащенные соединителями и прошедшие испытание.

6.5 Сигнализация по общему каналу

Станции SI-2000 с сигнализацией по общему каналу по системе 7 МККТТ (CCS7) оборудованы специальным управляющим устройством сети сигнализации по общему каналу (CCNC). К CCSM можно подключить 6х30 каналов ОКС 7.

6.6. Функциональная схема станции

Функциональная схема цифровой АТС типа SI-2000 представлена на рисунке 6.1.

На функциональной схеме представлены основные процессы и блоки АТС типа SI-2000:

SP – системные процессы (System Processes);

D – диагностика (Diagnostics);

S – синхронизация с окружающей средой (Synchronization);

OM – управление и техническое обслуживание (Operation and Maintenance);

DS – распределение тактовых импульсов (Distribution of Synchronization);

IPS – S – переключатель IPS (IPS Switch);

PCM – S – переключатель ИКМ (PSM Switch);

TP – телефонные процессы (Telephone Processes);

В данной главе рассмотрены основные характеристики и функциональная схема АТСЭ типа SI-2000. Особое внимание уделено описанию модулей станции.

Рисунок 6.1 - «Функциональная схема АТС SI-2000»

7. Расчет поступающей ТЛФ нагрузки и распределение ее по направлениям

7.1. Исходные данные

Исходные данные взяты согласно ведомственным нормам технологического проектирования (ВНТП –112-98) [4].

В таблице 7.1 приведены основные параметры интенсивности возникающей нагрузки:

среднее число вызовов Сi;

средняя продолжительность разговора Тi,с.;

доля занятий закончившихся разговором Pp.

Таблица 7.1 - Основные параметры интенсивности возникающей нагрузки

Количество жителей населенного пункта

Категории источников

Рр

Квартирный сектор

Народнохозяйственный сектор

Таксофоны

Скв

Tкв

Снх

Tнх

Ст

01

02

03

04

05

06

07

08

До 20 тыс. человек

0.9

100

3.1

80

6

110

0.5

В таблице 7.2. приведено процентное содержание абонентов соответствующих категорий и типы телефонных аппаратов.

Таблица 7.2

Категория источников нагрузки,

типы Т.А.

Число жителей: до 20 тыс. человек, К, %

Народнохозяйственные

15

Квартирные

80

Таксофоны

5

7.2 Расчет возникающей нагрузки

Возникающую нагрузку создают вызовы (заявки на обслуживание), поступающие от абонентов (источников) и занимающие на некоторое время различные соединительные устройства станции.

Согласно ведомственным нормам технологического проектирования следует различать три категории (сектора) источников: народнохозяйственный сектор, квартирный и таксофоны. При этом интенсивность местной нагрузки может быть определена, если известны следующие ее основные параметры:

Nнх, Nкв и Nт – число телефонных аппаратов народнохозяйственного сектора, квартирного сектора и таксофонов;

Снх, Скв и Ст – среднее число вызовов в ЧНН от одного источника i – категории;

Тнх, Ткв и Тт – средняя продолжительность разговора абонентов i – категории в ЧНН;

Рр – доля вызовов закончившихся разговором.

Структурный состав источников т.е. число аппаратов различных категорий определяется нуждами населения, а остальные параметры (Сi, Ti и Pp) – статистическими наблюдениями за действующими АТС данного района.

При отсутствии статистического учета интенсивность возникающей на станции местной нагрузки рекомендуется рассчитывать по средним значениям Сi, Ti и Pp приведенным в таблице 3.1.

Интенсивность возникающей местной нагрузки источников i–й категории, выраженная в Эрлангах, определяется формулой:

Yi = Ni Ci ti , (7.1)

где

ti – средняя продолжительность одного занятия, с:

ti = I Pp (tсо + n tн + tc + tпв + Ti + tо), (7.2)

где

I – коэффициент учитывающий продолжительность занятия приборов вызовами, не окончившихся разговором (занятость, не ответ вызываемого абонента, ошибки вызывающего абонента). Его величена, зависит от Ti и Pp и определяется по графику;

tсо = 3с. – среднее время слушания сигнала «ответ станции»;

n = 5 число набираемых знаков;

tпв = 7 с. – среднее время длительность сигнала «посылка вызова» при состоявшемся разговоре;

tc = tо = 0 – время соединения соответственно время установления соединения и время отбоя, которое для системы SI2000 составляет величину порядка десятков миллисекунд, поэтому будет равным нулю;

tнд = 1.5 с. – набор одной цифры номера при декадном наборе;

tнч = 0.8 с. – набор одной цифры номера при частотном наборе;

Полученные из графика зависимости I = F(Ti ,Pp) значения коэффициента I сведены в таблице 7.3

Таблица 7.3 – Значения коэффициента I

Количество жителей населенного пункта

Рр

Категории источников

Квартирный

Сектор

Народнохозяйственный сектор

Таксофоны

Tкв

кв

Tнх

нх

т

До 20 тыс. человек

0.5

100

0,9

80

3,1

110

6

Рассчитаем возникающею нагрузку для АТС с. Урджар (ЦС 21).

Для этого произведем расчет ti – средней продолжительности одного занятия для соответствующих категорий абонентов:

tнх = 1,2*0,5(3+7,5+2+7+80)=61,69,с.

tкв = 1.20.5(3+7,5+2+7+100)=71,7,с.

tт = 1.1750.5(3+4+2+7+110)=76,08,с.

Произведем расчет количества телефонных аппаратов соответствующей категории:

, (7.3)

где

N – монтируемая емкость

По формуле (7.3) выполняется расчет числа номеров соответствующих категорий.

Рассчитаем нагрузки каждой категории абонентов по формуле (7.1):

Yнх = =31,873 Эрл.

Yкв = = 57,36 Эрл.

Yт = = 25,36 Эрл.

Y’’21 = Yнх + Yкв + Yтч , (7.4)

Y’’21 =57,36+31,873+25,36 = 114,563, Эрл.

Поскольку цифры номера, поступающие с ТА, принимаются в абонентском модуле ASM (в многочастотном приемнике) без занятия MLI, то нагрузка на выходе MLI (плоскости коммутационного поля) меньше нагрузки, создаваемой абонентами за счет продолжительности занятия MLI если время занятия абонентского комплекта определяется формулой (7.2), то время занятия MLI меньше времени занятия абонентского комплекта на время слушания сигнала «ответ станции» и набора номера.

, (7.5)

Следовательно, нагрузка на MLI будет меньше на величину отношения:

, (7.6)

где для инженерных расчетов коэффициент можно принять равным 0.9. Поэтому значение нагрузки на выходе MLI будет на 10% меньше нагрузки поступающей на его вход.

Y’21 = 0.97 Y’’21, (7.7)

Y’21 = 0.97103,13 = 100,036 Эрл.

7.3. Распределение возникающей нагрузки

Распределение нагрузки по направлениям будет рассчитано согласно рекомендациям ВНТП по способу, при котором достаточно знать возникающею местную нагрузку каждой станции сети.

Вычислим нагрузку, направленную к узлу спецслужб Y’усс21, которая принимается равной 3% от Y’21:

внутристанционного сообщения,

=100%, (7.8)

где

Nсети – емкость сети 16340 номеров

Yусс21 = 0.03Y’21, (7.9)

Y’усс21 = 0.03103,13=3,09 Эрл.

Одна часть нагрузки Y’21 замыкается внутри станции Y’21, а вторая образует потоки к другим АТС.

Внутристанционная нагрузка определяется по формуле:

Y’21,21 = Y’21, (7.10)

где

 - доля или коэффициент

Определяется по значению коэффициента веса, с, который представляет собой отношение нагрузки Y’1 проектируемой станции к аналогичной нагрузки всей сети:

с = 100%, (7.11)

где

m – число станций, включая и проектируемую.

Если принять, что величины возникающих нагрузок пропорциональны емкостям станций N, то получим:

, (7.12)

тогда

с = 100%, (7.13)

с = 4000100/8150= 49,08, %

Зависимость коэффициента внутристанционного сообщения  от коэффициента веса с приведена на рисунке 7.3. [6]

Откуда  равна 58,2 %.

Таким образом, внутристанционная нагрузка равна:

Y’21,21 = (58,2100,36)/100 = 58,22, Эрл.

Далее произведем расчет нагрузки поступающей на АМТС:

Согласно нормам ВНТП:

Y‘зсл21=N0.0024, (7.14)

Y‘зсл21= 40000.0024 =9,6 Эрл.

Общая исходящая нагрузка определяется по формуле:

Yисх21 = Y’21 - Y’усс21 - Y’21,21 - Y’зсл21, (7.15)

Yисх21 = 100,36-58,22- 9,6= 30,07 Эрл.

Расчет возникающих нагрузок других станций.

Для станций ОС 231,ОС245,ОС263,ОС273,ОС275 с емкостью (100)

Возникающая нагрузка

=19

Yзсл = N0,0024 = 1000,0024 = 0,24, Эрл.

Yисх = 2,5-0,45-0,24= 1,73, Эрл.

Для станций ОС 241, ОС 251, ОС 281, 255 имеющих количество номеров 200.

 = 19,2

Yзсл = 2000,0024 = 0,48 Эрл.

Yисх = 4,85-0,93-0,48=3,44 Эрл.

Для станций ОС 243,271 с количеством номеров 50

 = 16

Yзсл = 500,0024 = 0,12 Эрл.

Yисх = 1,25-0,2-0,12 = 0,89 Эрл.

Для станций ОС 246, ОС253, 264, 256 с количеством номеров 150

 = 19

Yзсл = 1500,0024 = 0,36, Эрл.

Yисх = 3,75-0,71-0,36=2,56 Эрл,

Для станции ОС 310 с количеством номеров 2000

 = 42,4

Yзсл = 20000,0024 = 4,8, Эрл.

Yисх = 50,02-21,21-4,8 = 22,46 Эрл.

Результаты расчетов представлены в таблице 7.4.

Таблица 7.4 – Внутристанционные и исходящие нагрузки АТС

Обазначение АТС

Емкость номеров

Yпост,Эрл

Yусс, Эрл

nc,%

n,%

Yn,n., Эрл

Yзсл,Эрл

Yисх, Эрл

ЦС 21

4000

103,13

3,44

49,08

58,2

60,02

9,6

30,07

ОС-231

100

2,50

0,08

1,23

18

0,45

0,24

1,73

ОС-241

200

5,00

0,15

2,45

19,2

0,96

0,48

3,41

ОС-243

50

1,25

0,04

0,61

16

0,20

0,12

0,89

ОС-245

100

2,50

0,08

1,23

18

0,45

0,24

1,73

ОС-246

150

3,75

0,12

1,84

19

0,71

0,36

2,56

ОС-251

200

5,00

0,15

2,45

19,2

0,96

0,48

3,41

ОС-253

150

3,75

0,12

1,84

19

0,71

0,36

2,56

ОС-255

200

5,00

0,15

2,45

19,2

0,96

0,48

3,41

ОС-261

150

3,75

0,12

1,84

19

0,71

0,36

2,56

ОС-263

100

2,50

0,08

1,23

18

0,45

0,24

1,73

ОС-264

150

3,75

0,12

1,84

19

0,71

0,36

2,56

ОС-256

150

3,75

0,12

1,84

19

0,71

0,36

2,56

ОС-271

50

1,25

0,04

0,61

16

0,20

0,12

0,89

ОС-273

100

2,50

0,08

1,23

18

0,45

0,24

1,73

ОС-275

100

2,50

0,08

1,23

18

0,45

0,24

1,73

ОС-281

200

5,00

0,15

2,45

19,2

0,96

0,48

3,41

ОС-310

2000

50,02

1,55

24,54

42,4

21,21

4,8

22,46

7.4. Распределение интенсивности нагрузки по направлениям.

Произведем распределение интенсивности нагрузки по направлениям для АТС №21 пгт. Урджар.

Интенсивность исходящей нагрузки рассчитывается по формуле (7.16):

Yj-i = Yисхj Yисхi/(- Yисхj), (7.16) От ЦС 21 до всех ОС 241, ОС 251, ОС 281, 255 (200)

От ЦС 21 до ОС 231,ОС245,ОС263,ОС273,ОС275 (100)

От ЦС 21 до всех ОС 243,271 (50)

От ЦС 21 до ОС 246, ОС253, 264, 256 (150)

От ЦС 21 до всех ОС 310 (2000)

Расчеты для входящей нагрузки аналогично. Расчеты для других АТС СТС проводятся точно также. Результаты расчетов представлены в таблице № 7.5 в виде матрицы нагрузок.

Куда

ЦС (4 000)

ОС-1(100)

ОС2 (200)

ОС3 (50)

ОС-4 (100)

ОС 5(150)

ОС 6(200)

ОС-7(150)

ОС-8(200)

ОС-9(150)

ОС-10(100)

ОС11(150)

ОС12(150)

ОС13(50)

ОС14(100)

ОС15(100)

ОС16(200)

ОС17(2000)

Откуда

ЦС(4 000)

60,02

0,88

1,73

0,45

0,88

1,30

1,73

1,30

1,73

1,30

0,88

1,30

1,30

0,45

0,88

0,88

1,73

11,38

ОС-1(100)

0,59

0,45

0,07

0,02

0,03

0,05

0,07

0,05

0,07

0,05

0,03

0,05

0,05

0,02

0,03

0,03

0,07

0,44

ОС-2 (200)

1,19

0,07

0,96

0,04

0,07

0,10

0,96

0,10

0,96

0,10

0,07

0,10

0,10

0,04

0,07

0,07

0,96

0,89

ОС-3 (50)

0,30

0,02

0,03

0,20

0,02

0,03

0,03

0,03

0,03

0,03

0,02

0,03

0,03

0,20

0,02

0,02

0,03

0,23

ОС-4 (100)

0,59

0,45

0,07

0,20

0,45

0,05

0,07

0,05

0,96

0,05

0,03

0,05

0,05

0,02

0,03

0,03

0,07

0,44

ОС- 5(150)

0,89

0,05

0,10

0,03

0,05

0,71

0,10

0,08

0,10

0,71

0,05

0,71

0,71

0,03

0,05

0,05

0,10

0,66

ОС-6(200)

1,19

0,07

0,96

0,04

0,07

0,10

0,96

0,10

0,96

0,10

0,07

0,10

0,10

0,04

0,07

0,07

0,96

0,89

ОС-7 (150)

0,89

0,05

0,10

0,03

0,05

0,71

0,10

0,71

0,10

0,71

0,05

0,71

0,71

0,03

0,05

0,05

0,10

0,66

ОС-8 (200)

1,19

0,07

0,96

0,04

0,07

0,10

0,96

0,10

0,96

0,10

0,07

0,10

0,10

0,04

0,07

0,07

0,96

0,89

ОС-9 (150)

0,89

0,05

0,10

0,03

0,05

0,71

0,10

0,71

0,10

0,71

0,05

0,71

0,71

0,03

0,05

0,05

0,10

0,66

ОС-10(100)

0,59

0,45

0,07

0,20

0,45

0,05

0,07

0,05

0,96

0,05

0,45

0,05

0,05

0,02

0,03

0,03

0,07

0,66

ОС-11 (150)

0,89

0,05

0,10

0,03

0,05

0,71

0,10

0,71

0,10

0,71

0,05

0,71

0,71

0,03

0,05

0,05

0,10

0,66

ОС-12 (150)

0,89

0,05

0,10

0,03

0,05

0,71

0,10

0,71

0,10

0,71

0,05

0,71

0,71

0,03

0,05

0,05

0,10

0,66

ОС-13 (50)

0,30

0,02

0,03

0,20

0,02

0,03

0,03

0,03

0,03

0,03

0,02

0,03

0,03

0,71

0,02

0,02

0,03

0,23

ОС-14 (100)

0,59

0,45

0,07

0,20

0,45

0,05

0,07

0,05

0,96

0,05

0,45

0,05

0,05

0,02

0,45

0,03

0,07

0,44

ОС-15 (100)

0,59

0,45

0,07

0,20

0,45

0,05

0,07

0,05

0,96

0,05

0,45

0,05

0,05

0,02

0,03

0,45

0,07

0,44

ОС-16 (200)

1,19

0,07

0,96

0,04

0,07

0,10

0,96

0,10

0,96

0,10

0,07

0,10

0,10

0,04

0,07

0,07

0,96

0,89

ОС-17 (2000)

10,09

0,58

1,14

0,30

0,58

0,86

1,14

0,86

1,14

0,86

0,58

0,86

0,86

0,30

0,58

0,58

1,14

21,21

ЦКП

ОС 231

ОС 241

ОС 243

ОС 245

ОС 271

ОС 264

ОС 253

ОС 255

ОС 261

0,65

0,19

0,33

0,65

0,98

1,19

0,98

0,98

ЦС 21

цС 231

ОС 231

ОС 241

ОС 243

ОС 245

ОС 246

ОС 251

ОС 253

ОС 255

ОС 261

60,02+1,01*5+0,83*4+0,52*

*2+9,6=79,03

1,01

1,73

0,52

1,01

1,5

1,73

1,5

1,73

0,98

ОС 246

ОС 251

1,19

0,98

ОС 256

0,98

0,33

ОС 273

0,65

ОС 275

0,65

ОС 281

1,19

УС 310

15,92

ОС 264

ОС 256

ОС 271

ОС 273

ОС 275

ОС 281

УС 310

1,01

1,5

0,52

1,01

1,01

1,73

13,13+4,8=18,1

ОС 263

0,65

ОС 263

1,01

ЦС 21

60,02+0,65·5+0,54·4+0,33·2+

+5·0,98+9,6=78,95


Рисунок 7.1 – ЦКП проектируемой станции


7.5 Расчет числа входящих и исходящих ИКМ-линий для проектируемой

АТС SI-2000 (ЦC-21)

Так как проектируемая станция электронная, а остальные телефонные станции района координатные, то число ИКМ-линий от ЦС 21 (SI-2000) к остальным станциям района будем считать по первой формуле Эрланга, а от координатных станций к электронной – по формуле О’Делла.

Пучок ИКМ-линий на входе проектирунмой станции найдем по формуле О’Делла:

,

где

Е - необходимое число каналов;

YИСХ – исходящая нагрузка;

- коэффициенты, определяемые в зависимости от типа АТС.

Для АТС координатного типа:

E = 1,29·78,95+5,7 = 107,55 ≈ 108 каналов

1 Пучок линий на выходе проектируемой станции считаем по первой формуле Эрланга:

E(79,03; 0,001) = 120 каналов

ИКМ-линии

2 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС 21 (проектируемой) к ОС 231 (АТСКУ):

а) от ЦС-21 к ОС-231

E(1,01; 0,005) = 7 каналов

ИКМ-линия

б) от ОС-231 к ЦС-21

E = 1,290,65+ 5,7 = 7 каналов

ИКМ-линия

3 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-241.

а) от ЦС-21 к ОС-241

E(1,73; 0,005) = 9 каналов

ИКМ-линия

б) от ОС-241 (АТСКУ) к ЦС-21 (SI-2000)

E = 1,290,19 + 5,7 = 5,9 = 6 каналов

ИКМ-линия

4 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и УС-243.

а) от ЦС-21 к УС-243

E(0,52; 0,005) = 4 каналов

ИКМ-линия

б) от УС-243 к ЦС-21

E = 1,290,33 + 5,7 = 6 каналов

ИКМ-линия

5 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-245.

а) от ЦС-21 к ОС-245

E(1,01; 0,005) = 5 каналов

ИКМ-линия

б) от ОС-245 к ЦС-21

E = 1,290,65 + 5,7 = 7 каналов

ИКМ-линия

6 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-246.

а) от ЦС-21 к ОС-246

E(1,5; 0,005) = 6 каналов

ИКМ-линия

б) от ОС-246 к ЦС-21

E = 1,290,98 + 5,7 = 7 каналов

ИКМ-линия

7 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и УС-251.

а) от ЦС-21 к УС-251

E(1,73; 0,005) = 6 каналов

ИКМ-линия

б) от УС-251 к ЦС-21

E = 1,291,19 + 5,7 = 8 каналов

ИКМ-линия

8 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и УС-253.

а) от ЦС-21 к УС-253

E(1,5; 0,005) = 6 каналов

ИКМ-линия

б) от УС-253 к ЦС-21

E = 1,290,98 + 5,7 = 7 каналов

ИКМ-линия

9 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и УС-255.

а) от ЦС-21 к УС-255

E(1,73; 0,005) = 6 каналов

ИКМ-линия

б) от УС-255 к ЦС-21

E = 1,291,19 + 5,7 = 8 каналов

ИКМ-линия

10 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-261.

а) от ЦС-21 к ОС-261

E(0,98; 0,005) = 5 каналов

ИКМ-линия

б) от ОС-261 к ЦС-21

E = 1,290,98 + 5,7 = 7 каналов

ИКМ-линия

11 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-264.

а) от ЦС-21 к ОС-264

E(1,01; 0,005) = 5 каналов

ИКМ-линия

б) от ОС-264 к ЦС-21

E = 1,290,98 + 5,7 = 7 каналов

ИКМ-линия

12 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-271.

а) от ЦС-21 к ОС-271

E(0,52; 0,005) = 3 каналов

ИКМ-линия

б) от ОС-271 к ЦС-21

E = 0,330,98 + 5,7 = 6 каналов

ИКМ-линия

13 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-273.

а) от ЦС-21 к ОС-273

E(1,01; 0,005) = 5 каналов

ИКМ-линия

б) от ОС-273 к ЦС-21

E = 1,290,65 + 5,7 = 7 каналов

ИКМ-линия

14 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-275.

а) от ЦС-21 к ОС-275

E(1,01; 0,005) = 5 каналов

ИКМ-линия

б) от ОС-275 к ЦС-21

E = 1,290,65 + 5,7 = 7 каналов

ИКМ-линия

15 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-281.

а) от ЦС-21 к ОС-281

E(1,73; 0,005) = 7 каналов

ИКМ-линия

б) от ОС-281 к ЦС-21

E = 1,291,19 + 5,7 = 8 каналов

ИКМ-линия

16 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-310.

а) от ЦС-21 к ОС-310

E(18,1; 0,005) = 32 каналов

ИКМ-линии

б) от ОС-310 к ЦС-21

E = 1,2915,92 + 5,7 = 27 каналов

ИКМ-линия

17 Рассчитаем количество входящих и исходящих цифровых ИКМ-линий между ЦС-21 и ОС-263.

а) от ЦС-21 к ОС-263

E(1,01; 0,005) = 5 каналов

ИКМ-линия

б) от ОС-263 к ЦС-21

E = 1,290,65 + 5,7 = 7 каналов

ИКМ-линия

8. Расчет объема оборудования.

Расчет объема оборудования сводится к определению числа модулей подключенных к цифровому полю (ЦКП), комплектации и размещению оборудования.

В нашем случае в опорную станцию включено 4000 абонентов. В ЦС включено 17 ОС. Их тип, емкость, удаление от ЦС, тип систем передачи определено в первой главе. Если используются системы передач типа ИКМ-30, то ОС включаются в ЦС цифровым ИКМ-трактом.

Емкость аналогового абонентского модуля составляет 240 абонентских линий. В направлении от абонентских линий этот модуль преобразует аналоговые сигналы в цифровые, передаваемые в 32-х, либо в 16-канальным ИКМ-тракте. В направлении к абонентским линиям модуль преобразует цифровые сигналы в аналоговые. Количество аналоговых модулей ASM зависит от общего числа абонентов, обслуживаемых станцией.

Число модулей ASM определяется монтированной емкостью станции. ASM – аналоговый абонетский модуль устанавливаемый на опорной АТС.

Чтобы определить количество модулей ASM на проектируемой ЦС, необходимо знать общее число линий, включенных в абонентские модули:

,

N= 4000.

Тогда число модулей ASM определим по формуле:

,

где S-число абонентских модулей,

N-число источников нагрузки разных категорий,

-обозначение целой части числа.

S=18.

Расчет числа модулей ANM.

Для определения числа модулей ANM необходимо знать количество и тип комплектов аналоговых соединительных линий. Необходимо учесть, что на аналоговых линиях один КСЛ устанавливается на одну линию. Число модулей ANM определяется с учетом параметров одного модуля по формуле:

Nксл= 61

N ANM =3.

Расчет числа модулей DNM.

Число модулей DNM определяется числом 30-канальных ИКМ-трактов. Для расчета числа следует определить количество ИКМ-трактов на межстанционных связях (к/от ОС, к/от АМТС). В один модуль DNM включается один ИКМ-тракт. Для подключения ЦС к АМТС необходимо 4 модуля DNM, и еще пять модулей для подключения ОС2, ОС5, ОС6, ОС9, ОС10, ОС11, ОС14, ОС15 и ОС16 через цифровой конвертер D/D. Итого получается 10 модулей DNM.

По результатам расчета объема оборудования составляем спецификацию типов обрудования и его количества для проектируемой АТС. Спецификация оборудования ЦС записываем в таблицу 8.1.

Таблица 8.1.-Спецификация модулей проектируемой ЦС.

Наименование оборудования

Количество

1

Модуль GSM

1

2

Модуль ASM

18

3

Модуль ANM

3

4

Модуль DNM

11

5

Модуль CHM

1

6

Модуль ADM

1

9. РАСЧЕТ НАДЕЖНОСТИ

9.1 Показатели надежности связи

Общегосударственная коммутируемая телефонная сеть страны не может успешно развиваться без существенного повышения надежности оборудования коммутируемых узлов и станций, каналов и трактов сети.

В соответствии с [6,7] под надежностью коммутационного узла, станции, пучка каналов следует понимать их свойство выполнять свои функции по установлению соединений между абонентами коммутируемой телефонной сети и удержанию соединений на время передачи информации (разговора), сохранения во времени значения показателей качества обслуживания вызовов и параметров тракта передачи в установленных пределах. Критерием отказа направления связи или пучка каналов является превышение потерями вызовов, измеренными за небольшой промежуток времени t, определенного порога. Критерием отказа элементов тракта передачи узла, станции или отдельного канала является снижение отношения сигнал/шум ниже допустимого предела.

Показатель надежности подобных систем должен отражать влияние отказов отдельных элементов системы на техническую эффективность ее применения по назначению, под которой понимают свойство системы создавать некоторый полезный результат (выходной эффект) в течении некоторого периода эксплуатации в определенных условиях. Одним из таких показателей является коэффициент сохранения эффективности (КСЭ). Рассмотрим подробней свойства этого показателя. КСЭ  отношение показателя эффективности системы, рассчитанного с учетом возможности отказов ее элементов, к номинальному значению этого показателя, рассчитанному при условии полной работоспособности.

Показатель эффективности определяется как математическое ожидание выходного эффекта. При этом рассчитывается фактическое значение показателя эффективности Э (с учетом возможности отказов) и номинальное значение этого показателя Эо (при условии полной работоспособности). При этом КСЭ будет равен:

, (9.1)

Для анализа высоконадежных систем, когда КСЭ весьма близок к единице, более удобным может быть коэффициент потери (снижения) эффективности (КПЭ).

, (9.2)

КСЭ (и соответственно КПЭ) имеет простой физический смысл: если, например, выходной эффект выражается числом обслуживаемых абонентов и Кс.э = 0,997 (Кп.э =0,003), то это означает, что в среднем 0,3% абонентов не обслуживаются из-за отказов в системе.

В качестве показателя эффективности коммутационного узла (КУ) принимается математическое ожидание доли успешно обслуженных вызовов для стационарного процесса функционирования КУ при нагрузке, равной расчетной нагрузке в ЧНН [8]. При определение качества функционирования КУ учитываются следующие причины телефонных потерь: отсутствие свободных приборов (линейных, коммутационных, служебных и т.п.) из-за занятости или блокировки вследствие их неработоспособности приборов со скрытым (необнаруженным) дефектом, отказ прибора в процессе обслуживания вызова.

Для принятого показателя эффективности:

, (9.3)

где

 эффективность выполнения j-го этапа;

N  число этапов обслуживания вызова.

Отсюда

, (9.4)

Можно выделить следующие разновидности этапов обслуживания вызова:

обмен сигналами с входящей станцией с участием входящего линейного комплекта (ЛК);

выбор свободного исходящего ЛК и обмен сигналами с исходящей станцией с участием исходящего ЛК;

поиск свободных промежуточных путей и проключение соединительного тракта;

удержание установления соединения.

Для рассматриваемых разновидностей этапов обслуживания вызова методика определения состоит в следующем:

для каждой ступени оборудования КУ, занятого в выполнении этапа j, с учетом принятых методов резервирования, контроля и техобслуживания находятся составляющие коэффициента простоя , представляющие собой вероятности того, что в произвольный момент времени устройства ступени k будут неработоспособными (  отказ обнаружен,  отказ еще не обнаружен);

с помощью теории телетрафика [9] рассчитываются величины  вероятности блокировок при нагрузке (  удельная нагрузка на прибор) и емкостях групп приборов.

определяются значения:

 соответственно доля нагрузки, необслуженной из-за занятости приборов, и приходящейся на неработоспособные приборы в состоянии вычисляется значение:

, (9.5)

где

(9.6)

(9.7)

КСЭ позволяет сравнивать варианты построения системы, в том числе с учетом различных способов резервирования, организации контроля и техобслуживания, а также для расчета численности обслуживающего персонала.

9.2 Расчет надежности

Надежность связи от УКi к УКj – это вероятность исправного состояния хотя бы одного пути. Если все пути взаимно независимы, то:

ij =ijmax = (ijk), (9.7)

где

ij – надежность k-го пути ij k.

Надежность к-го пути определяется:

ijk = q aa , (9.8)

ijk ijk

где

а – вероятность исправности а-го ребра, принадлежащего пути ij k;

q a – вероятность неисправного состояния а-го ребра.

Однако в реальных условиях часто пути зависимы, т.е. имеют общие ребра. Равенство (4.7) превращается в неравенство и дает верхнюю оценку надежности. Действительное значение получится, если выражение (4.7) после раскрытия скобок все показатели степени, большей единицы, заменить на единицу. Такая операця обозначается буквой Е:

ij= Eijk, (9.9)

Схему сети сигнализации отображаем в виде графа(рисунок 4.3), вершины которого сопоставляются с пунктами сигнализации, а ребра со звеньями сигнализации.

В соответствии с формулой (9.9) определим надежность сети (надежности всех ребер одинаковы и равны Р=0,9):

1,2=(1-(1-рa)(1–pb pc pd pe pf pg ph))=

=(1- (1-0.9)(10.9*0.9*0.9*0.9*0.9*0,9*0,9))=0.959,

2,3=0.959,

3,4=0.959,

4,5=0.959,

5,6=0.959,

6,7=0.959,

7,8=0.959,

8,1=0.959,

9.3 Расчет экспериментального звена сигнализации

9.3.1 Расчет сигнальной нагрузки

Сигнальная нагрузка определяется по формуле:

eff eff eff ineffineff·ineff/ 8000 Эрл, (9.10)

где

Neff – число удачных вызовов в секунду приходящихся на пучок каналов емкостью С;

Nineff – число не удачных вызовов в секунду приходящихся на пучок емкостью С;

Мeff – среднее число сигнальных единиц которыми обмениваются пункты сигнализации для обслуживания удачных вызовов, Мeff=1;

Мineff – среднее число сигнальных единиц которыми обмениваются пункты сигнализации для обслуживания не удачных вызовов, Мineff=6;

Leff – средняя длина сигнальной единицы в байтах для удачных вызовов, Leff=130 байт;

Lineff – средняя длина сигнальной единицы в байтах для не удачных вызовов, Lineff=150 байт;

Число удачных вызовов определяется:

eff (9.11)

где

Xeff – отношение удачных вызовов к общему числу вызовов (от нуля до единицы);

С – число каналов обслуживаемых между звеном сигнализации;

А – средняя нагрузка в Эрлангах на разговорный канал;

Teff – среднее время занятия канала в секундах для удачного вызова; Teff=100 c.

Число неудачных вызовов:

(9.12)

где

Tineff – среднее время занятия канала в секундах для неудачного вызова,

Teff=12 c.

4.3.2 Рассчитаем сигнальную нагрузку от ЦС к АМТС:

STP1 –STP2

Средняя нагрузка на один разговорный канал:

(9.13)

где

А* – нагрузка на С каналов, А* = 17.5 Эрл.

С = 26 каналов, С определяется по первой формуле Эрланга.

Cогласно формуле (4.13) определяем:

Число удачных вызовов (4.14):

Число неудачных вызовов (9.15):

Нагрузка на звено сигнализации между STP1 – STP2 равна (9.15):

Вывод : Считается, что звено сигнализации работает нормально, если Y=0,2 Эрл. Если нагрузка больше, то звено дублируется. Следовательно необходимо одно звено сигнализации ОКС 7 для обслуживания СТС c. Уштерек.

9.3.3 Расчет надежности элементов станции

Понятие надежности программного обеспечения связано с тем, что вычислительный процесс обслуживания вызовов, организуемый управляющим устройством, базируется на сопоставлении информации о предыдущем состоянии системы, хранящейся в оперативном запоминающем устройстве, с информацией о текущем состоянии системы, хранящейся в периферийном

Следовательно, вероятность потери вызова на V - линейном пучке

Во второй модели также имеются два потока: простейший поток вызовов с интенсивностью нагрузки А=/ и простейший поток моментов выхода из строя линий, причем последний имеет абсолютный приоритет и интенсивность отказов . Вероятность потери источника вызова , а полезная нагрузка , где tm – средняя длительность обслуживания источника вызова. Так как обслуживание вызова может быть прервано, то , а . Рассмотрим систему распределения информации, которая в общем виде состоит из абонентских комплектов, коммутационного поля, комплектов соединительной линии и управляющих устройств. К управляющим устройствам относятся центральное и периферийные управляющие устройства.

Коммутационное поле имеет N входов, выходы КП разбиты на h направлений, пучок линий в j- м направлении содержит Vj линий . Вызову, поступившему на вход системы, может потребоваться соединение с одной и только одной линией определенного для данного вызова направления, причем безразлично, с какой именно и по какому пути.

Вероятность того, что поступивший вызов i-го входа потребует соединения с j-м направлением может зависеть как от номера входа, так и от номера направления. Будем считать, что эта вероятность зависит только от j. В этих условиях характер потока вызовов в направлении сохранится, его интенсивность . Структурные параметры КП предполагаются известными.

Элементы системы обладают конечной надежностью. Последнее означает, что на элементы системы воздействует поток неисправностей, который может быть примитивным или простейшим с интенсивностями нагрузки Аа.к для абонентских комплектов, Ак.э для коммутационных элементов КП, Ам.с для монтажных соединений, Ал для линейных (исходящих, входящих) комплектов, Аш для шнуровых комплектов, Ар для периферийных управляющих устройств, Ас для центрального управляющего устройства. Строго говоря, поток неисправностей всегда примитивный, однако в тех случаях, когда параметр потока неисправностей одного элемента весьма мал, а число элементов велико, характер потока близок к простейшему. Интенсивности восстановления неисправных элементов системы соответственно равны rа.к,…,rc.

Любой вызов обслуживается центральным управляющим устройством имеющем Vс – краткий резерв, которое, будучи в исправном состоянии, через Vр периферийных управляющих устройств получает информацию о поступлении вызова, его требованиях (например, номере направления, с которым нужно установить соединение или номере входа по которому поступил вызов), о состоянии самой системы, т.е. о том, какими путями в КП проходят уже установленные соединения и какие элементы системы исправны. Неисправные элементы системы обнаруживаются мгновенно. На основании такой информации УУ принимает и осуществляет решение об обслуживании данного вызова или отказе. Занятие соединительных путей в КП происходит случайно. В случае неисправности УУ все поступившие в систему вызовы теряются. При неисправности АК теряются вызовы, поступившие на этот комплект. Восстановление неисправных элементов системы, работающей в необслуживаемом режиме, начинается с момента прибытия ремонтно-восстановительной бригады.

За основу расчета примем тот факт, что реальная пропускная способность системы определяется числом только исправных элементов, образующих фактическую структуру системы. Таким образом, определение пропускной способности системы с ненадежными элементами, по сути, сводится к нахождению фактической структуры (или нагрузки) и расчету пропускной способности уже известными методами для систем с абсолютно надежными элементами.

Пусть N=n, j=h=1, Vj=V, s=1. Надежность линий (выходов из коммутаторов) и монтажных соединений внутри коммутатора намного выше надежности коммутационных элементов, т.е. Ал=Ам.с=0, Ак.э0. Предположим, коммутационные элементы выходят из строя намного реже, чем поступают вызовы. Тогда дополнительные потери в коммутаторе (помимо тривиальных потерь в пучке линий) обусловлены только ненадежностью коммутационных элементов. Если dк.э – число исправных коммутационных элементов в произвольный момент в вертикали, к которой подключен источник вызова, к.э – условные потери, а – вероятность наличия точно dк.э исправных или V-dк.э неисправных коммутационных элементов вертикали, то по формуле полной вероятности

(9.16)

Из (4.16) для нашего случая имеем

Коммутационные элементы имеют два вида неисправностей: обрыв и короткое замыкание.


(9.17)

Обрыв лишает возможности проключения источника вызова (вертикали) на один из выходов (горизонталь) коммутатора. Неисправность этого типа не влияет на обслуживание источников вызова, подключенных к другим вертикалям. Обозначим к.э0 параметр потока неисправностей типа "обрыв" одного исправного коммутационного элемента.

Короткое замыкание не дает возможности отключить освободившийся или свободный источник вызова (вертикаль) от выхода (горизонтали) коммутатора. Эта неисправность влияет на обслуживание источников вызова, подключенных к другим вертикалям, так как горизонтали всех источников –общие. Обозначим через к.э1 параметр потока неисправностей типа "короткое замыкание" одного исправного коммутационного элемента. Исходя из сказанного (9.16) и (9.15)

ак.э=к.э /rк.э=(nк.э1+к.э0/ rк.э. (9.18)

После вычислений произведенных на программном продукте Mathcad вероятность потерь  = Р в полнодоступном пучке с ненадежными коммутационными элементами составила при известной интенсивности нагрузки поступающего простейшего потока вызовов А = 6,58 на SI-2000 от ОС, интенсивности нагрузки поступающего простейшего потока неисправностей В = 0,0001, емкости пучка V = 1.

По результатам вычисления получилось Р = 0,0412.

Таким образом, вероятность потери вызова из-за выхода из строя элементов станции составляет Р=0,0412, что удовлетворяет установленным нормам.

10. ОЦЕНКА КАЧЕСТВА ПЕРЕДАЧИ РЕЧЕВОЙ ИНФОРМАЦИИ ПО КАНАЛАМ СВЯЗИ И АНАЛИЗ СМО С ОЧЕРЕДЬЮ

10.1 Оценка качества передачи речевого сигнала по каналам связи

Как показано в, задача выбора интегрального критерия оценки качества передачи речевой информации по каналам мобильной связи сводится к вычислению обобщенного коэффи­циента Кобощ.кач. Отмечено, что интегральная оценка качества определяется либо средней арифметической, либо средней гео­метрической величиной. В данной статье рассматриваются возможные численные методы интегральной оценки качества передачи речевой информации, передаваемой по мобильным каналам связи, и пути правильного выбора одного из них.

Арифметический метод определения интегрального критерия сводится к оптимизации многокомпонентной функции оценки качества. Ранее авторами статьи уже предлагались два вариан­та арифметического метода вычисления Кобощ.кач.

В первом случае обобщенный коэффициент качества:

(10.1)

где

μ1 = 0,2;

μ2 = 0,4;

μ3 = 0,2;

μ4 = 0,2 – весовые коэффициенты, найденные методом экспертных оценок.

Во втором случае

(10.2)

где

μ1 = 0,25;

μ2 = 0,5;

μ3 = 0,25.

К достоинствам арифметического метода нужно отнести то, что он учитывает удельный вес каждого индивидуального критерия оценки (разборчивости, натуральности, громкости, структуры мобильного канала связи). Для определения воз­можности использования данного метода оценки качества передачи речевой информации по каналам связи предлагается рассмотреть взаимосвязь между индивидуальными компонен­тами и интегральным критерием. Однако практика показыва­ет, что, когда одна из составляющих интегрального критерия равна нулю, интегральный критерий тоже должен быть равен нулю. Формулы (1) и (2) не отражают эту взаимосвязь. Для устранения основного недостатка арифметического метода их необходимо скорректировать. Тогда выражения (1) и (2) примут вид:

(10.3)

где М = 1, если Кгр, Кразб, Кнат, и Кстр.кан не равны 0; М = 0, если хоть один из указанных коэффициентов равен 0;

(10.4.1)

где коэффициент М принимает такие же значения, что и в (10.3).

При геометрическом методе определения интегрального критерия возможны три варианта: оптимистический, пессими­стический и реалистический.

Оптимистический критерий оценки качества определяется как максимальное значение

(10.4)

Из (10.4) следует, что при равенстве любой из составляющих компонент нулю Кобобщ.кач.опт. тоже равен нулю и достигает максимума только тогда, когда все компоненты достигают максимума. Таким образом, данная формула удовлетворяет требуемому условию.

Пессимистический критерий оценки качества передачи определяется как минимальное значение. Интегральная оценка равна самому минимальному значению из всех компонент:

(10.5)

Реалистический критерий является комбинированным ва­риантом оптимистического и пессимистического критериев Суть его заключается в том, что интегральная оценка равна: а) одной из составляющих компонент, когда три остальные равны максимуму; б) геометрической средней величине двух компонент, когда третья и четвертая равны максимуму; в) геометрической средней величине трех компонент, когда одна из них достигает максимума; г) геометрической средней величине всех компонент, когда ни одна из них не достигает максимума.

Для вычисления Кобобщ.кач.реал. практически применим вариант (г), т.е. (10.6)

Отметим, что реалистический критерий действительно является интегральным. Используя его, можно считать, что: - в данном интегральном критерии содержатся все основные показатели, характеризующие качество передачи ре­чевой информации по каналам связи;

- оценки по реалистическому критерию действительно правильно характеризируют качество передачи речевой инфор­мации.

Следовательно, выбранный критерий допускает количе­ственную оценку качества передачи речевой информации по каналам мобильной связи. Желательно, чтобы при геометри­ческом методе определения интегрального критерия так же, как и при арифметическом, учитывались весовые коэффициен­ты каждой из его составляющих. Поэтому авторами пред­лагается скорректированное выражение для расчета интегра­льного критерия независимо от числа составляющих ni,

где

Ai = μiКi - произведение весового коэффициента на величину составляющей интегрального критерия качества.

На основе выбранного критерия предлагается новая мето­дика объективной оценки качества передачи речевой информации по каналам мобильной связи, которая обладает соответствую­щим преимуществом перед субъективными (абонентскими) методами.

Учитывая, что конечным приемником речевой информации в канале связи обычно является слуховой аппарат человека, целесообразно оценивать качество передачи речи "искусствен­ным ухом", характеристики которого должны совпадать с основными характеристиками естественного уха. Согласно выбранному критерию в "искусственном ухе" должны присут­ствовать эталонные значения каждой из компонент, характе­ризующих качество передачи речи по каналам связи. Сопо­ставление реальных параметров речевого сигнала с эталонны­ми значениями в "искусственном ухе" позволяет оценивать качество с требуемой точностью. Для автоматизации процесса контроля качества передачи речевой информации "искусствен­ное ухо" должно оценивать не акустический, а электрический входной сигнал (первичный сигнал). Поэтому будем "искус­ственное ухо" называть электронным.

"Электронное ухо" представляет собой совокупность ча­стотных фильтров, усилителей, генераторов эталонных сигна­лов, компараторов, накопителей и ряда вспомогательных устройств. Необходимо, чтобы чувствительность "электронно­го уха" совпадала с чувствительностью естественного. Одной из основных характеристик естественного уха является порог слышимости. На малых уровнях совокупность слышимых тонов ограничена порогом слышимости, на больших - боле­вым порогом.

Доказано, что ухо обладает повышенной механической чувствительностью к некоторым частотным составляющим сигнала и пониженной - к другим. Подобная частотная зависимость определяется субъективно. В какой-то степени изменения порога слышимости могут быть объяснены просто изменением механической чувствительности уха. Поэтому при телефонной связи равные мощности сигнала и помехи различ­ной частоты оказывают различное влияние на качество связи вследствие частотной зависимости чувствительности уха. Следовательно чувствительность "искусственного уха" должна совпадать с чувствительностью естественного уха в частотном диапазоне канала ТЧ 0,3...3,4 кГц.

Таблица 10.1 – Частотная характеристика чувствительности уха

Частота, кГц

0,3

0,4

0,5

0,6

0,8

1,0

Чувствительность, дБ

-20

-13

-9

-4

-2

0

Частота, кГц

1,6

2,0

2,1

2,4

3,0

3,4

Чувствительность, дБ

-2

-2,5

-2,6

-3

-4

-7

В опубликованных ранее работах была исследована зави­симость чувствительности уха от частоты в децибелах относи­тельно исходного давления 2·10-5 Н/м2 или 2·10-4 мкб (1 мкб = 10-1 Н/м2. В таблице приведена частотная характери­стика чувствительности уха.

При телефонной передаче, как было сказано выше, дей­ствие отдельных составляющих спектра сигнала помехи ока­зывается неодинаковым из-за частотной зависимости чувстви­тельности уха. В соответствии с приведенными выше положе­ниями главным условием реализации предлагаемой методики является наличие устройства, обеспечивающего отличие рече­вых сигналов от отраженных сигналов и других видов шумов и измерение их энергетических характеристик на фоне мешаю­щего воздействия остальных с требуемой степенью достовер­ности. Традиционно подобные задачи решаются с помощью устройств - "детекторов речи", которые используются во многих приложениях: статистических системах уплотнения (передачи), эхоподавляющих устройствах и др. Степень до­стоверности обнаружения определяется алгоритмом распоз­навания, заложенным в детекторе речи.

Предлагаемый новый метод оценки качества передачи речевой информации, учитывающий особенности мобильной связи, позволит создать эффективное устройство контроля, обеспечивающее определение с достаточной степенью точности реального коэффициента качества и его отклонения от норма­тивного значения, в соответствии с которым вносятся корректи­вы в параметры канала связи.

Кроме основной проблемы повышения качества передачи речевой информации по каналам мобильной связи, в дальнейшем необходимо решить ряд сопутствующих задач, в частности: каким должно быть устройство контроля — индивидуальным или групповым, а также его место и способ подключения; определить структуру сигналов управления устройства контроля для изме­нения параметров канала; выбрать элементную базу его реали­зации.

Блок-схема алгоритма:




10.1.1 Инструкция оператору

Программа вычисления качества передачи речевого сигнала составлена на языке программирования « Turbo Pascal 7,0»

Объём занимаемой программы памяти – 80 Kбайт

Порядок вычисления:

а) запустить программу;

б) ввести исходные данные: Коэффициенты качества

в) вывод результатов на дисплей;

г) анализ результатов работы программы .

Используя программу, вычислим интегральный коэффициент качества арифметическим и геометрическим методами. Результат сведем в таблицу 5.2.

Таблица 5.2 – Расчет интегрального коэффициента качества

Коэффициент натуральности

5

Коэффициент разборчивости

5

Коэффициент громкости

4

Коэффициент структуры канала

4

Интегральный коэффициент качества

4.3

10.2 Анализ СМО с накоплением

10.2.1 Инструкция оператору

Программа в анализа работы СМО с очередью составлена на языке программирования « Turbo Pascal 7,0»

Объём занимаемой программы памяти – 100 Kбайт

Порядок вычисления:

а) запустить программу;

б) ввести исходные данные:

Интенсивность потока сообщений;

Число каналов вторичной сети связи;

Максимальное число сообщений в накопителе;

Среднее время передачи одного сообщения.

в) вывод результатов на дисплей;

Используя программу, вычислим показатели работы СМО с накоплением. Результат сведем в таблицу 10.2.

Таблица 10.2 – Расчет интегрального коэффициента качества

Интенсивность потока сообщений

8

Число каналов вторичной сети связи

5

Максимальное число сообщений в накопителе

6

Среднее время передачи одного сообщения

0,4

Среднее время передачи одного сообщения каждым каналом связи

0,08

Интенсивность обслуживания заявок

2,5

Нагрузка системы

3,2

Вероятность нулевого состояния СМО

0,04

Относительная пропускная способность

1

Абсолютная пропускная способность

8

Среднее число занятых каналов связи

3,2

Среднее число сообщений в накопителе

0,03

Среднее суммарное время пребывания сообщения в очереди

0,4

Блок-схема алгоритма



11. Безопасность жизнедеятельности.

11 .1 Расчет зануления.

В электроустановках напряжением до 1 кВ с заземленной нейтралью для надежной защиты людей от поражения электрическим током применяется зануление, обеспечивающее автоматическое отключение участка сети, на котором произошел пробой на корпус. Занулением называется преднамеренное соединение металлических нетоковедущих частей электрооборудования, которые могут случайно оказаться под напряжением, с глухо-заземленным нулевым проводом трансформатора или генератора в сетях трехфазного тока, с глухо-заземленным выводом источника однофазного тока, с глухо-заземленной средней точкой источника в сетях постоянного тока через сопротивление повторного заземления Рп.

Расчет зануления сводится к определению условий, при которых обеспечиваются быстрое срабатывание максимально-токовой защиты и отключение поврежденной, установки от сети. Если сопротивление нулевого провода больше сопротивления фазного не более чем в 2 раза, то условия срабатывания максимально-токовой защиты почти всегда удовлетворяются. Исключением могут быть случаи электроснабжения по воздушным линиям, имеющим значительные реактивные сопротивления.

Для надежного отключения аварийного участка необходимо, чтобы ток в короткозамкнутой цепи значительно превосходил ток установки защиты или номинальный ток плавкой вставки, т.е. IK.3. kIH ,

Где: k- коэффициент, при защите плавкими предохранителями k > 3, при защите автоматическими выключателя с номинальными токами до 100 A k=T,4, для прочих автоматов защиты k = 1,25.

Ток с однофазного КЗ 1к. з при замыкании фазы на зануленный корпус равен отношению фазного напряжения сети U к полному сопротивлению короткозамкнутой цепи zk.s. , которое складывается из полных сопротивлений фазы трансформаторов zt /3, фазного проводника 7ф, нулевого защитного проводника zh внешнего индуктивного сопротивления контура «фаза-нуль» Хв т.е

I к.з = U /Z к.з = U/ (ZT/ 3 + Zф + ZH + JXв) (11.1)

Сопротивление короткозамкнутой цепи шунтируется параллельно ветвью, состоящей из последовательно соединенных сопротивлений заземления нейтрали обмотки трансформатора R0 и повторного заземления нулевого провода Rп. Так как сумма сопротивлений этих заземлении много больше сопротивления короткозамкнутой цепи, то параллельную ветвь, образованную заземлениями можно не учитывать.

Полные сопротивления нулевого и фазного проводов можно представить в следующем виде:

Zф = Кф + JXф И Zн=Rн +JXн, (11.2)

Где

Rф ,Rн - активные,

Xф , Xн - внутренние индуктивные сопротивления, Ом, соответственно фазного и нулевого проводов. Абсолютное значение тока КЗ:

1 к.з = U/ (Zi/3 +(R Ф + R H) + (ХФ+XH+XB)2 ) (11.3)

Это выражение определяет приближенное значение тока КЗ, так как модуль полных сопротивлений трансформатора и цепи «фаза-нуль» суммируются арифметически, что считается допустимым.

Внешнее индуктивное сопротивление контура «фаза-нуль» Хв может быть определено как индуктивное сопротивление двухпроводной линии с проводами с круглого сечения одинакового диаметра d (м), проложенного на расстоянии d(m), между ними.

Хв = L = /(L In 2D/d), (11.4)

где

 - угловая частота тока, рад/с;

L - индуктивность линии;

 - относительная магнитная проницаемость среды.

11.1.1. Произведем расчет зануления:

Стойка получает электроэнергию от трансформатора 6/0,4 кВ мощностью Р =400 кВ*А, расстояние от трансформатора до места расположения потребителей энергии L = 127м.

Потребители энергии защищаются плавкими вставками. В качестве фазных проводов используется кабель с медными жилами

диаметром d =3,56 мм, сечением S =10 мм2 , нулевой провод выполнен

из стальной шины сечением Sст = 20 х 4мм2 и проложен на расстоянии

L = 56 см от кабеля.

Прежде всего, нужно проверить систему зануления на отключающую способность:

ожидаемый ток

I Кз=31 ном; Рн= 3 Uл IЛ= 3 U0 Iномн (11.5)

номинальный ток

Iном = Рн/3 Uф = 27*103/3*220 = 35,6А=40 А (11.6)

ожидаемой ток КЗ I Кз 3*40= 120 А. (11.7)

Из таблицы 12.2 определяем zt = 0,0906 Ом. Сопротивление фазных проводов Rф - рL/SФ = 0,018* 127/ 10 = 0,275Ом; Хф = 0. Если нулевой проводник из меди, то его сопротивление rh = 2Rф Ом; Хн = 0. Если же нулевым проводом является стальная шина, то следует определить плотность тока КЗ в нулевом проводе, т.е.

 = 1кзо/ sh.ct = 120/80 = 1,4 А/мм2. (11.8)

При этой плотности тока по табл. 12.4 находим R= 3, 25 Ом/км

Х= 2,11 Ом/км, RH = 3,25*0,15 = 0,53 Ом.

ХН = 2Д1 * 0,15 = 0,32 Ом

xb/l = 0,1256 In 2D/d = 0,1256 In (2500/3,56) = 0,1256 In 280 = 0,66 Ом/км

Хв=0,66*0,127=0,099Ом

Полное сопротивление цепи «фаза - нуль»

(11.9)

ZK3=Z0+ZH+jZH=(RФ+RH)j(Xф+ХН+Хв)=0,27+0,53)+j(0+0,32+0,099)= 0,42+j0,419.

Модуль полного сопротивления цепи «фаза-нуль»

Z =V(Rф+RH)2+(Хф+XH+XB)2=V(0,42)2+(0,419)2=1,39Ом. (11.10)

Действительный ток

K3I к.з = Uф / (ZT/3 + ZK3) = 220/(0,0906/3 + 1,39) =138,7А (11.11)

Т.е. больше ожидаемого тока КЗ I к.з > 3Iном (138,7 > 120).

11.2 Искусственное освещение

Условия искусственного освещения на предприятиях связи оказывают большое влияние на зрительную работоспособность, физическое и моральное состояние людей, а следовательно, на производительность труда, качество продукции и производственный травматизм.

Для создания благоприятных условий труда производственное освещение должно отвечать следующим требованиям:

освещенность на рабочем месте должна соответствовать гигиеническим нормам;

яркость на рабочей поверхности и в пределах окружающего пространства должна распределяться по возможности равномерно;

резкие тени на рабочей поверхности должны отсутствовать, наличие из создает неравномерное распределение яркости;

блескость должна отсутствовать в поле зрения;

освещение должно обеспечивать необходимый спектральный состав света для правильной цветопередачи.

Искусственное освещение может быть двух систем: общее и комбинированное. При комбинированном освещении к общему добавляется местное освещение, концентрирующее световой поток непосредственно на рабочих местах. Общее освещение подразделяется на общее равномерное и общее локализованное. Применение одного местного освещения в производственных зданиях не допускается. Искусственное освещение подразделяется также на рабочее, аварийное, эвакуационное и охранное.

Проектирование искусственного освещения заключается в решении следующих задач: выбор системы освещения, типа источника света, расположение светильников, выполнение светотехнического расчета и определение мощности осветительной установки.

11.2.1 Расчет искусственного освещения

Расчет производится в основном по двум методам: методу коэффициента использования и точечному методу. Метод коэффициента использования предназначен для расчета общего равномерного освещения горизонтальных поверхностей при отсутствии крупных затеняющих предметов.

По точечному методу рассчитывается общее локализованное освещение, общее равномерное освещение при наличии существенных затенений и местное освещение.

11.2.2 Точечный метод

Произвести реконструкцию в сети освещения операторного зала.

Исходные данные:

Габариты помещения:

длина помещения А-40м;

ширина помещения В-20м;

высота Н-6м;

Количество светильников –15 шт;

Тип светильника ДРЛ-250;

Разряд зрительной работы V, а;

Коэффициенты отражения %:

потолка рпот=70%;

стены рст=50%;

пола рпол=30%.

Нормируемая освещенность по таблице 1.2, графа 8 (литература (1)) – Е=200лк;

ДРЛ с мощностью –250Вт;

Световой поток –Фл=13000лм (таблица 2.2 литература (1));

Коэффициент запаса Кз=1,5;

Точечный метод.

Расчетная высота подвеса – рабочая поверхность находятся на высоте 1,2 м от пола, высота свеса ламп – 0,5м, следовательно:

h=H-(hсв+ hрп)=6-(0,5+1,2)=4,3м; (11.12)

; в=2,5м; с=3,5м; (11.13)

(11.14)

; (11.15)

;

cos=0.707; cos3=0.354;

А I находится в следующей таблице:

Тип

светильника

Мощность лампы, Вт

Сила света, I ,кд

0

5

15

25

35

45

55

65

75

85

90

ДРЛ

250

431

390

380

340

305

297

185

101

80

40

7

I - сила света направления угла;

 = 450; I = 297кд;

;

l1= l2= l6= l7

в=10,5м; с=2,5м; d=10.794м;

; ; cos=0.375; cos3=0.053;

I=94 кд;

;

в=17,5м; с=2,5м; d=17,678м;

; ; cos=0.236; cos3=0.013;

I=84 кд;

;

в=24,5м; с=2,5м; d=24,627м;

; ; cos=0.172; cos3=0.005;

I=62 кд;

;

l3=l8;

l4=l9;

l5=l8;

в=7,5м; с=3,5м; d=8,276м;

; ; cos=0.460; cos3=0.097;

I=108 кд;

;

в=3,5м; с=7,5м; d=8,276м;

; ; cos=0.461; cos3=0.098;

I=108 кд;

;

в=10,5м; с=7,5м; d=12,903м;

; ; cos=0.316; cos3=0.032;

I=868 кд;

;

в=17,5м; с=7,5м; d=19,039м;

; ; cos=0.220; cos3=0.011;

I=72 кд;

;

в=24,5м; с=7,5м; d=25,622м;

; ; cos=0.166; cos3=0.005;

I=62 кд;

;

∑lr=l1+l2+…+ln; (11.16)

∑lr – условная суммарная освещенность, создаваемая всеми светильниками, в осматриваемой точке.

(11.17)

11.2.3 Метод коэффициента использования

Для ДРЛ-250:

Расчетная высота подвеса:

h=6-(1,2+0,5)=4,3м;

Наивыгоднейшее расстояние между светильниками определяется как

(11.18)

где ;

Индекс помещения i определяется

(11.19)

;

Коэффициент использования по таблице 2.5 графа 15 (литература 1):

η=66%

Коэффициент запаса по таблице 1.10 (литература 1):

Кз=1,5

Эти значения подставляем в формулу и определяем количество люминесцентных ламп:

; (11.20)

;

Z=1.1=1.2;

S – освещаемая площадь, м2;

Z- коэффициент неравномерности освещения;

лампы.

А для другого, например ЛД-40, IV, разряда(конструкторского):

η=58% (кнорринг, таблица 5-19, стр.144);

Кз=1,5 ((1)литература 1.10 таб.);

Е=200 лк ((1)литература 1.2 таб.);

лампы.

Фл=2340лм ((1)литература 2.2 таб.);

Автоматические установки пожаротушения

Имеются два типа установок:

водяного и пенного пожаротушения

газового пожаротушения

При выборе типа установки учитываются следующие требования:

АУП, за исключением сплинкерных, должны иметь дистанционное и местное включения;

АУП должны выполнять одновременно и функции автоматической пожарной сигнализации;

АУП следует проектировать с учетом строительных особенностей, защищаемых зданий и помещений, возможностей и условий применения огнетушащих веществ исходя из характера технологического процесса производств и технико-экономических показателей.

Тип установки и огнетушащие вещества выбраны с учетом пожарной опасности и физико-химических свойств производимых, хранимых и применяемых веществ и материалов.

Параметры АУП выбраны в зависимости от группы помещений приведенных в обязательном приложении 2. (СНиП 2.04.09-84 стр.15)

Автоматические пожарные извещатели выбраны с учетом требования рекомендуемого в приложении 3. (СНиП 2.04.09-84 стр.16)

На предприятиях связи (АТС) используем установки газового пожаротушения.

В проекте предложено использование трех типов установок газового пожаротушения:

установки объемного пожаротушения;

установки локального пожаротушения по объему;

установки локального пожаротушения по площади;

Способ пуска установки газового пожаротушения может быть электрическим или пневмоэлектрическим, рекомендовано использование электрического подключения.

В составе установки газового пожаротушения, кроме рассчитанного, предусмотрен 100%-ый резервный запас огнетушащего вещества.

В установках газового пожаротушения применяются следующие огнетушащие вещества:

– двуокись углерода (CO2 );

– хладон 114B2 (тетрафтордиброметан C2F4Br2);

– хладон 13B1 (бромтрифторметан CF3Br);

– комбинированный углекислотно-хладоновый состав (85% двуокиси углерода, 15% хладона 114B2);

– азот (N2);

– аргон (Ar).

При локальном пожаротушении по объему используют двуокись углерода и хладон 114B2, а при локальном пожаротушении по площади используют двуокись углерода.

11.3.1 Расчет установок пожаротушения с комбинированным углекислотно-хладоновым составом.

Расчетная масса комбинированного состава mc, кг для объемного пожаротушения определяется по формуле:

md = kб qn V, (11.21)

где

kб – коэффициент компенсации неучитываемых потерь углекислотно-хладонового состава (таблица 3 СНиП 2.04.09-84 стр.23)

qn – нормативная массовая огнетушащая концентрация углекислотно-хладонового состава, принимается 0,27 кг/м3 при времени заполнения помещения равном 60 с;

V – объем защищаемого помещения, м3

md = 1,13  0,4 450= 203,4 кг (11.22)

При наличии постоянно открытых проемов, площадь которых составляет от 1 до 10% площади ограждающих конструкций помещений, принимаем дополнительный расход углекислотно-хладонового состава, равный 5 кг на 1 м2 площади проемов

5 % от 120 м2

5 кг на 6 м2 = 30 кг.

Расчетное число баллонов  определяем из расчета вместимости в 40 литровый баллон 25 кг состава. То есть в нашем случае:

2 = 203,4 +30 = 233,4кг/25 = 10

2 = 10 баллонов

Внутренний диаметр магистрального трубопровода d (мм), определяем по формуле:

d = d1

где

dl – диаметр сифонной трубки баллона, мм;

число одновременно разряжаемых баллонов.

dl = 1238 мм

Эквивалентная длина магистрального трубопровода l2 (м), определяется по формуле:

l2 = k2l, (11.24)

где

k2 – коэффициент увеличения длины трубопровода для компенсации неучитываемых местных потерь, принимается по таблице 4 (СНиП стр.23);

l – длина трубопровода по проекту, м.

k2 = 1,1; l = 12 м

l2 = 1,112 = 13,2 м

Площадь сечения выходного отверстия оросителя A3 (мм 2), определяем по формуле:

(25)



где

S – площадь сечения магистрального трубопровода, мм 2

1 число оросителей

S = 1134 мм 2; 1 = 23

A3 = 50 мм 2

Расход углекислотно-хладонового состава Q (кг/с), в зависимости от эквивалентной длины и диаметра трубопровода определяется по чертежу 3 (СНиП 2.04.09-84 стр.24). Но диаметр трубопровода превышает 35 мм, и расход определяем следующим образом:

По заданной приведенной длине трубопровода определяется расход Q, кг/с, для трубопровода диаметром 35 мм.

О

(11.26)


пределяем удельный расход q (кг/(ссм 2)), углекислотно-хладонового состава:

Определяем расход Q, кг/с, углекислотно-хладонового состава:

(11.27)



Р

(11.28)


асчетное время подачи углекислотно-хладонового состава t(мин), определяем по формуле:

где, md – расчетная масса углекислотно-хладонового состава, кг;

Q – расход углекислотно-хладонового состава, кг/с.

М
ассу основного запаса углекислотно-хладонового состава m (кг), определяем по формуле:

(11.29)


где

Kв – коэффициент, учитывающий остаток углекислотно-хладонового состава в баллонах и трубопроводах, принимаем по таблице 5 (СниП 2.04.09-84 стр. 24)

лампы.

12. БИЗНЕС- ПЛАН

12.1 Цель проекта

Целью данного проекта является модернизация сети телекоммуникаций районного центра Урджар на основе замены координатной АТС на новую электронную станцию типа SI-2000. SI-2000 - полностью цифровая телефонная станция, произведенная словенской фирмой “ISKRATEL”. Применяется обычно на сельских телефонных сетях.

Территория Урджарского района составляет 22,6 тыс. кв. км. Центр района расположен в селе Урджар

На существующей АТСК 100/2000 задействованная емкость составляет 2000 номеров. Установка цифровой телефонной станция SI-2000 увеличивает емкость до 4000 номеров.

Для выяснения экономической эффективности при внедрении цифровой станции SI-2000 составим финансовый план, который включает в себя расчет капитальных удельных затрат, доходов, эксплуатационных расходов, прибыли, рентабельности и срока окупаемости.

12.2 Рынок

На рынке услуг телекоммуникаций в районе сторонних операторов связи нет. В настоящее время на телефонной сети используются АТС координатной системы. Основными покупателями услуг являются абоненты, которые пользуются этими услугами. Переход к рыночным отношениям вызвал появление в Казахстане большего числа предприятий малого и среднего бизнеса, нуждающихся в качественной связи. Как известно спрос рождает предложение, поэтому наряду с существующей государственной сетью появились компании (нередко организованные с привлечением частного капитала), предоставляющие современные услуги связи. Последние достижения в развитии электронной и вычислительной техники позволили создать принципиально новые системы автоматической коммутации.

В настоящее время в Республике Казахстан активно действующими фирмами, кроме ISKRATEL являются: AT&T (5ESS), NETAS (DMS), ALKATEL (S-12) и SIEMENS (EWSD).

Наличие на рынке сразу нескольких фирм производителей коммутационных систем в результате конкуренции позволило добиться значительных скидок в цене.

12.3 Объект бизнес-плана

Объектом бизнес-плана является Урджарский район Восточно-Казахстанской области. Население района составляет 94281 человек. В районе имеется 27 сельских округов, 59 сельских населенных пунктов (из которых 48 телефонизированы). 27 сельских АТС с монтированной емкостью 6950№№. Плотность телефонов на 100 человек сельского населения составляет 7 телефонов. Основные направления экономики: сельскохозяйственное производство, пищевая и перерабатывающая промышленность. Градообразующими предприятиями являются АО "Урджар Астык", ТОО "Урджарский мясокомбинат". В районе функционируют 60 дневных общеобразовательных школ, 1 профессионально-техническое учебное заведение, 5 больниц, культурно-просветительные учреждения.

12.4 Услуги

SI-2000 является полностью цифровой, способной обслуживать постоянно возрастающую нагрузку станцией. Цифровизация может быть расширена от станции до индивидуального абонента, чей телефон может быть заменен на многофункциональный информационный терминал, дающий возможность интеграции речи и данных, повышает количество и надежность передачи.

С момента появления на сельских телефонных сетях SI-2000, ряд сервисных услуг значительно расширился. Были введены следующие дополнительные услуги:

декадный набор номера

частотный набор номера

перенаправление вызовов

постановка на ожидание

вызов без набора номера

тарифные импульсы 16 кГц

таксофон

контрольный счетчик у абонента УАТС

поиск свободной линии

поиск свободной линии в группе линий УАТС

прямой набор абонентов УАТС, входящая связь

прямой набор номера УАТС, исходящая связь

улавливание злонамеренного вызова

сокращенный набор номера

запреты некоторых видов связи

запрет исходящей связи под управлением абонента

запрет входящей связи конференц-связь

наблюдение за счетчиками исходящих вызовов

наблюдение за счетчиками входящих вызовов

вызов абонента по заказу (автоматическая побудка)

12.5 Клиенты

Клиентами являются жители с. Урджар ВКО, которые пользуются услугами телефонной связи: физические и юридические лица. На сегодняшний день покупателями услуг телефонной связи являются: государственные учреждения и предприятия, медицинские учреждения, частные предприятия, фермерские хозяйства и население, которые пользуются несколькими видами услуг связи.

Распределенное управление в SI-2000 обеспечивает ряд характеристик системы, выгодных администрации телефонных сетей и абонентам: устойчивость к отказу всей системы, способность плавного увеличения нагрузки и производительности системы управления, ограниченный набор печатных плат, на которых построена станция.

12.6 Финансовый план

12.6.1 Расчет капитальных затрат

Общие капитальные вложения:

(12.1)

где

КО - капитальное вложение на приобретение оборудования;

КМ - капитальное вложение монтаж системы на месте эксплуатации;

КТР - капитальное вложение на транспортные расходы;

(5-10% от стоимости оборудования)

Стоимостями КПЛ. и КЗАП. ЧАСТИ можно пренебречь, так как они незначительны.

Стоимость коммутационного оборудования определялась из расчета стоимости всего оборудования SI-2000.

Исходя из данных, капитальные вложения на приобретение оборудования SI-2000 на 4000 номеров и оборудования RSU составляет:

КО=30700 тыс. тенге

Стоимость перевозки оборудования к месту эксплуатации составляет 5% от стоимости оборудования:

(12.2)

Стоимость монтажа системы составляет 8% от стоимости оборудования:

(12.3)

Следовательно, по формуле (12.2) находим общие капитальные затраты на систему:

12.6.2 Расчет эксплуатационных расходов

Расчет годовых эксплуатационных расходов на содержание оборудования производится по формуле:

(12.4)

где

ФОТ - фонд оплаты труда (основная и дополнительная заработная плата;

ОС – отчисления, социальный налог (20% от ФОТ);

М – материальные затраты и запасные части (расходы на запасные части и текущий ремонт составляют 0,5% от капитальных вложений;

Э – электроэнергия для производственных нужд;

А – амортизационные отчисления;

К – кредиты, (в нашем случае кредиты не используются);

Н– накладные расходы (прочие производственные и транспортные расходы),75% от себестоимости.

Для вычисления фонда оплаты труда необходимо, привести штат обслуживающего персонала, (таблица 7.1)

Минимальный расчетный показатель заработной платы, ЗП составляет 919 тенге.

Таблица 12.1 - Обслуживающий персонал

Должность

Количество

Оклад

Дневной инженер

1

19000

Сменный оператор

3

16000

Основная заработная плата работников за год составляет:

(12.5)

В годовой фонд оплаты труда включается дополнительная заработная плата (работа в праздничные дни, сверхурочные и т.д.) в размере 30% от основной заработанной платы:

(12.6)

Таким образом, фонд оплаты труда вычисляется по формуле:

(12.7)

ФОТ= 804000+241200=1045,2 тыс. тенге.

Отчисления в фонд социального страхования берутся в размере 20% от фонда оплаты труда:

(12.8)

Затраты на материалы и запасные части составляют 0,5% от капитальных вложений.

(12.9)

Стоимость электроэнергии для производственных нужд рассчитывается по формуле:

(12.10)

где

4,83 - стоимость одного киловатт в час 1 кВт/час;

I - потребляемый ток в ЧНН на 1000 номеров для оборудования, I=5А;

U - станционное напряжение, U=48В;

n - число тысячных групп, в нашем случае равное 1,504;

 - КПД выпрямительной установки, =0,65;

Кk - коэффициент концентрации, Кk=0,11;

365 - количество дней в году.

Амортизационные отчисления определяются на основе капитальных вложений и норм амортизационных отчислений.

(12.11)

где

На,i - норма амортизационных отчислений от среднегодовой стоимости основных производственных фондов, для цифровых АТС составляет -10%;

Ф – среднегодовая стоимость основных фондов (капитальных вложений);

По формуле (7.5) рассчитываем эксплуатационные расходы:

Э=(1045,2+209,04+1750,3+17,753+3500,6)*1,75=11415,063тыс. тенге.

12.6.3 Расчет суммы доходов

Доходы от основной деятельности – доходы, получаемые предприятием связи за весь объем реализованных услуг.

Расчет доходов произведем по средне доходной таксе:

(12.13)

где

- номенклатура услуг;

- исходящий платежный обмен по видам;

- средне доходная такса по i-му виду услуг связи.

Расчет доходов включает:

доходы от подключения новых абонентов;

доходы от абонентской платы;

доходы от междугородных, международных разговоров

Физические лица из вновь подключенных абонентов составляют 70% или 1400 единиц, юридические лица 30% или 600 единиц.

Средне доходная такса по абонентской плате для физических лиц составляет 250 тенге, по междугородним, международным разговорам 10 тенге, плата за подключение – 12000 тенге.

Для юридических лиц абонплата составляет - 540 тенге, за установку – 48000 тенге.

По фактическим данным трафик на один телефонный аппарат по Урджарскому РУТ составляет 70 минут,

тогда 1940*70=135800 минут.

=16296000+1680000+288000+8400000+777600=27441,6 тыс. тенге

12.6.4 Расчет показателей экономической эффективности

При развитии, расширении и реконструкции предприятий связи рассчитываются следующие показатели экономической эффективности.

Коэффициент общей (абсолютной) - экономической эффективности капитальных вложений [5].

(12.14)

где

- доходы от основной деятельности;

- эксплуатационные расходы;

- капитальные затраты;

- чистый доход;

или 48 %.

Срок окупаемости капитальных вложений – срок возвратности средств, является показателем обратным общей (абсолютной) экономической эффективности [6]:

(12.15)

Т=1/0,48=2,1 года

В таблице 7.2 приведен бизнес-эффект от внедрения цифровой АТС с использованием цифрового оборудования системы SI-2000.

Таблица 12.2 - Бизнес-эффект от внедрения SI-2000 с. Урджар ВКО

Экономические показатели

Значения

Капитальные затраты, тыс. тенге

35006

Эксплуатационные расходы, тыс. тенге

11415,063

Штат работников, человек

4

Сумма доходов, тыс. тенге

27441,6

Экономическая эффективность, %

48

Срок окупаемости, год

2,1

Нормативный (плановый) коэффициент сравнительной экономической эффективности чаще всего принимается в размере 0,2, что соответствует сроку окупаемости равному пять лет и является наиболее распространенным в международной практике. [5].

Таким образом, внедрение данного проекта является экономически выгодным.

ЗАКЛЮЧЕНИЕ

Для решения поставленной задачи дипломного проекта по внедрению цифровой коммутационной станции была предложена для применения система SI-2000 фирмы "ISKRATEL". Использование новой системы коммутации позволит улучшить качество и надежность телефонной связи.

Произведенные расчеты в дипломном проекте показывают, что внедрение новой станции связано с довольно большим объемом вычислительной работы, также при расчете необходимо было учитывать существующую организацию связи на сельской сети, а также с перспективой развития данной сети. Наиболее важными разделами являются: обоснование данного проекта, расчет и распределение нагрузки на сети, расчет необходимого объема оборудования, а также обеспечение безопасности жизнедеятельности и составление бизнес-плана для данного проекта.

Для реализации проекта потребуются большие капитальные затраты, эксплуатационные расходы: затраты на электроэнергию, на материалы и запасные части, на зарплату работникам, на нормы амортизационных отчислений, но при эксплуатации цифровой системы коммутации расходы окупятся за четыре года и один месяц. При этом доходы будут увеличиваться по мере увеличения абонентов.

Это позволит решить задачу о полном удовлетворении потребностей населения с. Урджар и района в целом в предоставлении услуг качественной и надежной связи с другими городами Казахстана.

Литература

А.В. Буланова и др. «Основы проектирования электронных АТС»/учебное пособие. –М.: 1990. – 60с.

Г.Ю. Квиринг и др. «Дипломное проектирование. Методические указания по оформлению и рекомендации по защите дипломных проектов для инжинерно-технических специальностей» –М.:МИС, 1990. – 38с.

Н.П. Резникова, Е.В. Демина. «Технико-экономическое обоснование дипломных проектов»/Методические указания/МТУСИ –М.2000.

Ведомственные нормы технологического проектирования. Станции городских и сельских телефонных сетей. ВНТП-112-98.

И.С. Михалин М.А. Комягин Р.Н. Сидорцов «Основы проектирования современных систем коммутации» г. Ростов-на-Дону. 2001.

Н.И. Баклашов, Н.Ж. Китаева, Б.Д. Терехов. «Охрана труда на предприятиях связи и охрана окружающей среды» – М.: Радио и связь, 1989.

Е.В. Долбинина, Е.В. Костюк, В.А.Курбатов. «Экология и безопасность жизнидеятельности». – М. 1996

Е.В. Долбинина, К.П. Деминский. «Выполнение расчетной части ДП по охране труда»

Техническое описание системы SI2000

Ю.Н.корнышев, А.П. Пшенников, А.Д. Харкевич «Теория телетрафика» - м.: Радио и связь, 1996.

О.Н. Иванова, М.Ф. Копп, З.С. Каханова, Г.Б. Метельский «автоматическая коммутация» /Учебник для ВУЗов – М.: Радио и связь, 1988. – 624с.

В.Е. Быков И.С. Михалин Пособие для дипломного проектирования «Безопасность и экологичность решений проекта» г. Роств-на-Дону СКФ МТУСИ 1999.

Долин П. А. “Справочник по технике безопасности”, М., “Энергоиздат”, 1982.

Журнал «Вестник связи» №3, 6 1999; № 2, 5 2000.