Расчет характеристик электропривода насоса Д5000-32-2 для 2-х способов регулирования производительности

Министерство образования Российской Федерации

Чувашский государственный университет им. И.Н. Ульянова

Кафедра «Системы автоматизированного управления электроприводами»

Курсовой проект

по дисциплине

“Автоматизированный электропривод промышленных установок и технологических комплексов”

На тему: Расчет характеристик электропривода насоса Д5000-32-2 для 2-х способов регулирования производительности.

Проверил:

профессор, к.т.н.

Ларионов Владимир Николаевич

Чебоксары, 2005

Содержание

1. Введение

2. Построение характеристик насоса для скоростей, отличных от номинальной и характеристики магистрали

3. Расчет и выбор электродвигателя и асинхронно-вентильного каскада

4. Расчет и построение механических характеристик .

5. Расчет потерь скольжения, потерь в асинхронно-вентильном каскаде и потерь в роторе

6. Расчет мощности, потребляемой из сети приводом при регулировании задвижкой и с помощью асинхронно-вентильного каскада .

7. Список использованной литературы

1. Введение

Современное промышленное и сельскохозяйственное производство, транспорт, коммунальное хозяйство, сферы жизнеобеспечения и быта связанны с использованием разнообразных технологических процессов, большинство из которых основано на применении рабочих машин и механизмов, разнообразие и число которых огромно. Там, где применяются технологические машины – используется электропривод. Практически все процессы, связанные с движением с использованием механической энергии, осуществляются электроприводам. Исключение составляют лишь некоторые транспортные и сельскохозяйственные машины (автомобили, тракторы и др.), но и в этой области перспективы использования электропривода стали вполне реальны.

Электропривод – главный потребитель электрической энергии. В развитых странах на долю электропривода приходится свыше 60% всей вырабатываемой электроэнергии.

Электроприводы различны по своим техническим характеристикам: по мощности, скорости вращения, конструктивному исполнению и другим. Мощность электроприводов прокатных станов, компрессоров газоперекачивающих станций и ряда других уникальных машин доходит до нескольких тысяч киловатт. Мощность электроприводов, используемых в различных приборах и устройствах автоматики, составляет несколько ватт. Диапазон мощности электроприводов очень широк. Также велик диапазон электроприводов по скорости вращения.

Большинство производственных рабочих машин и механизмов приводится в движение электрическими двигателями. Двигатель вместе с механическими устройствами (редукторы, трансмиссии, кривошипно-шатунные механизмы и др.), служащими для передачи движения рабочему органу машины, а также с устройствами управления и контроля образует электромеханическую систему, которая является энергетической, кинематической и кибернетической (в смысле управления) основой функционирования рабочих машин.

В более сложных технологических машинных комплексах (прокатные станы, экскаваторы, обрабатывающие центры и другие), где имеется несколько рабочих органов или технологически сопряженных рабочих машин, используется несколько электромеханических систем (электроприводов), которые в сочетании с электрическими системами распределения электроэнергии и общей системой управления образуют электромеханический комплекс.

Большие скорости обработки, высокая и стабильная точность выполнения технологических операций потребовали создания высокодинамичных электроприводов с автоматическим управлением. Стремление снизить материальные и энергетические затраты на выполнение технологических процессов обусловило необходимость технологической и энергетической оптимизации процессов; эта задача также легла на электропривод. На этапе технического развития машинного производства, достигнутого к концу XX века, электромеханические комплексы и системы стали определять технологические возможности и технический уровень рабочих машин, механизмов и технологических установок.

Создание современных электроприводов базируется на использовании новейших достижений силовой электротехники, механики, автоматики, микроэлектроники и компьютерной техники. Это быстро развивающиеся области науки, что определяет высокую динамичность развития электромеханических систем.

В последние годы с появлением доступных технических средств для регулирования скорости асинхронных двигателей для привода насосов в системах тепло- и водоснабжения стали применятся регулируемые электроприводы.

Электропривод насоса выполняет две функции: преобразует электрическую энергию в механическую, необходимую для подачи воды потребителю, и управляет работой установки таким образом, чтобы поддерживать требуемую величину напора и расхода воды.

Автоматизированный электропривод получил в последние десятилетия интенсивное ускоренное развитие. Это определяется, в первую очередь, общим прогрессом машиностроения, направленным на интенсификацию производственных процессов, их автоматизацию, повышение точностных характеристик и других технических требований, связанных с обеспечением стабильности качества производимой продукции.

Вторым обстоятельством, обусловившим развитие электропривода, явилось распространение его применения не только на промышленное производство, но и на другие сферы, определяющие жизнедеятельность человека: сельское хозяйство, транспорт, медицину, электробытовые установки и др.

Третья причина связана с наметившимся переходом от экстенсивного развития производства электрической энергии к более эффективному ее использованию. Повышение эффективности электромеханического использования электроэнергии всецело зависит от совершенствования электропривода.

2. Построение характеристик насоса для скоростей, отличных от номинальной и характеристики магистрали

Исходные данные:

(η,4*%)

Рис. 2.1 Характеристика насоса Д5000-32-2; n=585об/мин.

Производительность и напор находятся по формулам:

, . (2.1)

Номинальные значения производительности и напора соответствуют значениям на характеристике насоса для номинальной скорости.

Рассчитаем характеристику насоса для различных скоростей по формулам 2.1. Результаты занесем в таблицу 2.1.

Далее рассчитаем характеристику магистрали по двум точкам. По заданию известно, что статический напор м. Также известно, что при м3/ч напор м. Известно, что:

(2.2)

Определим . Из формулы (2.2) имеем:

,

Получим:

.

Тогда зависимость для магистрали выражается формулой:

(2.3)

Используя формулу (2.3) рассчитаем несколько точек магистрали. Результаты занесем в таблицу 2.2.

Таблица 2.1.

Точка

1

2

3

Q,м3

900

3000

4800

Н, м

20

17

12

Q,м3

630

2100

3360

Н, м

9,8

8,33

5,88

Q,м3

720

2400

3840

Н, м

12,8

10,88

7,68

Q,м3

810

2700

4320

Н, м

16,2

13,77

9,72

Таблица 2.2.

Q,м3

0

500

1000

1500

2000

2500

3000

Н, м

8

8.495

9.98

12.455

15.92

20.375

25.82

По точкам из таблиц 2.1 и 2.2 построим семейство характеристик насоса для скоростей от ω>Н >до 0,7ω>Н> и характеристику магистрали (рис.2.2).

Рис. 2.2 Характеристики насоса для скоростей отличных от номинальной и характеристика магистрали.

3. Расчет и выбор электродвигателя и преобразователя частоты

Мощность насоса в кВт в рабочей точке определяется по формуле:

, (3.1)

где Н>Н> [м], Q>H>> >[м3/ч] и η>Н> - значения напора, производительности и КПД, соответствующие точке пересечения характеристики насоса и магистрали;

- плотность перекачиваемой среды в кг/м3;

Получим:

кВт.

Двигатель выбираем исходя из условия:

Выберем двигатель серии АК с фазным ротором:

Тип двигателя – АК12-42-10 УХЛ4

Синхронная частота вращения – n>=600 об/мин.

Номинальная мощность – Р>=200 кВт.

Напряжение статора – U>1л>=6000 В.

Напряжение ротора – Е>2к>=500 В.

Ток ротора – I>2>=270 А.

Номинальный КПД – > >>H>=91,0 %.

Номинальное скольжение 2.5%

Номинальный cosφ – cosφ> =0.79

Отношение максимального момента к номинальному – М>МАХ>/ М>>IN>=2.4.

Электродвигатели переменного тока с фазным ротором серии АК предназначены для привода механизмов:

– требующих регулирования частоты вращения (ленточных конвейеров и др.);

– не требующих регулирования частоты вращения, но с тяжелыми условиями пуска (вентиляторов, цементных и угольных мельниц и др.)

Двигатели предназначены для работы от сети переменного тока частотой 50 Гц, напряжением 6000 В. Номинальный режим работы — продолжительный (S1). Пуск двигателей серии АК осуществляется как вручную с помощью пускового реостата, так и автоматически с помощью магнитной станции. Пусковой реостат или магнитная станция по требованию заказчика могут поставляться комплектно с электродвигателем.

Двигатели допускают два пуска подряд из холодного состояния и один пуск из горячего состояния. Конструктивное исполнение двигателей по способу монтажа - горизонтальное, без фундаментной плиты, с двумя щитовыми подшипниками, с одним свободным концом вала для соединения с рабочим механизмом при помощи полумуфты. Двигатели выполняются защищенными. Предназначены для работы с самовентиляцией в закрытых помещениях с нормальной окружающей средой. Изоляционные материалы обмотки статора класса нагревостойкости не ниже «В».

Обмотка статора имеет шесть выводных концов, закрепленных на четырех изоляторах в коробке выводов. Схема соединения фаз — звезда.

Коробка выводов статора располагается с правой стороны, если смотреть на свободный конец вала (левое расположение указывается в заказе). Двигатели допускают правое и левое направления вращения. Изменение направления вращения осуществляется только из состояния покоя.

Структура условного обозначения:

АК — ХХ -ХХХ-Х-ХХХХ4

АК — асинхронный двигатель с фазным ротором

ХХ — габарит электродвигателя

ХХХ — полная длина сердечника статора в см

Х — число полюсов

ХХХХ — климатическое исполнение

4 — категория размещения

Степень защиты IP01

Форма исполнения 1M1001

Способ охлаждения IC01

Режим работы S1

Двигатели могут изготавливаться на напряжение 3000В.

Регулирование скорости двигателя осуществляется с помощью асинхронно-вентильного каскада.

Исходя из мощности двигателя выбираем АВК:

Тип АВК – ЭКА4-630-380.

Напряжение питания инвертора – U>ПИТ>=380 В.

Номинальная мощность преобразователя – Р>=500 кВт.

Номинальный фазный ток ротора – I>2>=435 А.

Рабочее линейное напряжение ротора – U>2, ЛИН>=680 В.

Электроприводы по схеме асинхронного вентильного каскада ЭКА-4 предназначены для регулирования скорости асинхронных электродвигателей с фазным ротором мощностью до 5000 кВт с отдачей энергии скольжения в питающую сеть и могут быть использованы для изменения производительности насосных агрегатов и поддержания давления на их выходе, а также в ряде других производственных механизмах с тяжелыми условиями пуска и частичным диапазоном регулирования скорости (дробилки, цементные вращающиеся печи и др.).

Электроприводы включают в себя тиристорно-диодный агрегат со сглаживающим дросселем и согласующим трансформатором (при питании агрегата от высоковольтной сети), блоки пусковых резисторов, станцию управления пуском и остановом электродвигателя, а также шкаф управления переключением на резервный электродвигатель и шкаф управления пуском резервного электродвигателя на пусковых резисторах.

Предусмотрено местное управление электродвигателями со станции управления и дистанционное – с пульта управления.

Электроприводы выполнены с применением микроконтроллеров серии PIC, имеют связь с ЭВМ высшего уровня по каналу RS 485.

Имеется защита роторных цепей электродвигателя от перенапряжений при исчезновении напряжения питания с высокой стороны.

Электроприводы позволяют:

существенно экономить электроэнергию;

избежать частых пусков электродвигателя при изменении подачи в замкнутых по уровню системах регулирования водоснабжения;

уменьшить эксплуатационные и капитальные затраты по сравнению с высоковольтными частотно-регулируемыми электроприводами, поскольку установленная мощность электрооборудования определяется диапазоном регулирования скорости.

4. Расчет и построение механических характеристик

Как известно, мощность насоса определяется по формуле:

; (4.1)

Разделив обе части этого равенства на скорость, получим выражения для момента в зависимости от скорости

; (4.2)

Используя полученную формулу, построим механическую характеристику насоса. Для этого находим по графику Q, H, η, соответствующие точке пересечения характеристики магистрали и характеристики насоса для одной из скоростей.

кНм,

с-1, а

об/мин.

кНм,

с-1.

кНм,

с-1.

кНм,

с-1.

Таким образом, статическая механическая характеристика насоса имеет вид, изображенный на рис.4.1.

Определим показатель степени k. Показатель степени k определим по формуле:

(4.3)

Рис. 4.1 Статическая механическая характеристика насоса

Найдем из рис. 2.2 производительности и напоры, соответствующие двум разным скоростям, например и .

с-1;

м;

м3/ч;

с-1;

м;

м3/ч;

Подставляя полученные значения в формулу (4.3) получим:

.

Таким образом, статическая механическая характеристика насоса принимает вид:

, где

Нм.

Номинальный момент двигателя:

Нм.

Для построения семейства механических характеристик двигателя при регулировании скорости с помощью асинхронно-вентильного каскада будем использовать следующее выражение:

,

Где - скольжение холостого хода;

- индуктивное сопротивление рассеяния фазы двигателя, приведенной к обмотке ротора;

Принебрегая активным сопротивлением статора, т.е. полагая , что допустимо для двигателей большой мощности получим:

, (4.4)

где . Здесь - активное сопротивление ротора.

Найдем сопротивление ротора по формуле:

Ом, где

кВт.

Найдем индуктивное сопротивление рассеяния фазы двигателя, приведенной к обмотке ротора из формулы:

,

Т.к. М>max>/ М>=2.4, то Нм.

Тогда Ом.

Тогда .

Меняя в формуле (4.4) , строим регулировочные характеристики при регулировании с помощью АВК.

Рис 4.2 Регулировочные характеристики при регулировании с помощью АВК и статическая механическая характеристика насоса.

5. Расчет потерь скольжения, потерь в асинхронно-вентильном каскаде и потерь в роторе

Потери в роторе определяются из выражения

.

Известно, что на линейном участке механической характеристики асинхронного двигателя, момент прямо пропорционален току ротора, тогда из выражения

следует, что

.

В этом случае, формула для потерей в роторе принимает вид

.

Потери скольжения определяются как

Или

.

Потери в асинхронно-вентильном каскаде определяются как

.

Подставляя в это выражение и , получим

,

где .

Тогда потери в АВК определятся по формуле:

Рис 5.1 Потери скольжения, потери в роторе и в АВК

6. Расчет мощности, потребляемой из сети приводом при регулировании задвижкой и с помощью асинхронно- вентильного каскада

Мощность, потребляемая асинхронным двигателем из сети, определяется как

.

Для построения графика зависимости находим на характеристике насоса (рис.2.1) при номинальной скорости двигателя напор и КПД, соответствующие заданной производительности и подставляем в приведенную выше формулу. Далее из рис.2.1 и 2.2 находим напор и КПД для работы при других скоростях. Таким образом, получим несколько точек искомой зависимости (табл.6.1), по которым и построим график зависимости мощности, потребляемой асинхронным двигателем от производительности насоса (рис.6.1).

При работе с номинальной скоростью получим

, , , тогда

кВт.

Таблица 6.1.

2250

1825

1425

825

18

14.8

12

9.5

0.68

0.6

0.47

0.33

177.99

134.53

108.73

70.98

Мощность, потребляемая из сети, определяется как

.

При регулировании скорости с помощью АВК часть энергии скольжения теряется в роторе и в АВК, а часть возвращается обратно в сеть.

Найдем мощность, возвращаемую в сеть:

.

Таким образом, с учетом отдачи части энергии скольжения обратно в сеть, мощность, потребляемая из сети, определится как

.

Т.к. скорость двигателя прямо пропорциональна производительности

,

тогда подставив это равенство в выражение для мощности, потребляемой из сети, получим

.

Рис. 6.1. Зависимость мощности, потребляемой из сети приводом при регулировании задвижкой и с помощью асинхронно-вентильного каскада, от производительности

Таким образом, при регулировании производительности насоса с помощью АВК имеется значительный выигрыш электроэнергии по сравнению с регулированием задвижкой.

7. Список использованной литературы

    Соколов М.М. «Автоматизированный электропривод общепромышленных механизмов» М.:Энергия, 1976 г.

    Ключев В.И. «Электропривод и автоматизация общепромышленных механизмов» М.:Энегрия, 1980 г.

    Конспект лекций.