Математические основы теории систем (работа 1)

Саратовский Государственный Технический Университет

Балаковский Институт Техники Технологии и Управления

Кафедра:

Специальность:

Курсовая работа

МОТС

Выполнил:

Принял:

Балаково 2009г.

I-часть

Задание1: По виду электрической схемы построить математическую модель объекта управления в пространстве состояния.

Задание2: По построенной модели составить структурную схему и сигнальный граф.

Задание3: Используя формулу Мейсона найти передаточную функцию объекта управления.

Задание4: По передаточной функции объекта управления определить временные и частотные характеристики. Построить их зависимость: АЧХ, ФЧХ.

Задание5: По полученным зависимостям определить прямые и косвенные оценки качества объекта управления.

II-часть.

Задание1: По заданной корреляционной функции Kx(t) определить спектральную плотность Sx(w) для белого шума, который подается на вход формирующего фильтра.

Задание2: По заданным статистическим характеристикам Se,Sv определить передаточную функцию формирующего фильтра y(р)

Задание3: Представить объект управления в виде

0100090000032a0200000200a20100000000a201000026060f003a03574d464301000000000001004ef50000000001000000180300000000000018030000010000006c0000000000000000000000080000001000000000000000000000009c160000e904000020454d4600000100180300001200000002000000000000000000000000000000900600001a040000b801000013010000000000000000000000000000c0b6060038320400160000000c000000180000000a0000001000000000000000000000000900000010000000dd00000030000000250000000c0000000e000080250000000c0000000e000080120000000c00000001000000520000007001000001000000f1ffffff00000000000000000000000090010000000000cc04400022430061006c006900620072006900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100dc5f11001000000040631100c060110052516032406311003860110010000000a8611100246311002451603240631100386011002000000049642f31386011004063110020000000ffffffff0c04e600d0642f31ffffffffffff0180ffff0180efff0180ffffffff0000000000080000000800004300000001000000000000006000000025000000372e9001cc00020f0502020204030204ef0200a07b20004000000000000000009f00000000000000430061006c00690062007200000000000000000000611100dee32e31e88d0832606411006c6011009c3827310800000001000000a8601100a8601100e878253108000000d06011000c04e6006476000800000000250000000c00000001000000250000000c00000001000000250000000c00000001000000180000000c00000000000002540000005400000000000000000000000800000010000000010000001886d1411886d141000000000d000000010000004c000000040000000000000000000000dd0000003000000050000000200000000900000046000000280000001c0000004744494302000000ffffffffffffffffde00000031000000000000004600000014000000080000004744494303000000250000000c0000000e000080250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c023000dd00040000002e0118001c000000fb021000070000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01000004000000020101001c000000fb02f1ff0000000000009001000000cc0440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010100040000002d010100040000002d010100050000000902000000020d000000320a0d0000000100040000000000dd00300020000900040000002d010000040000002d010000030000000000V(t) X(t) Y(t)

и оценить качество полученной системы по переходной характеристике.

Задание4: Сделать вывод по работе.

I-часть

Данные

R1

R2

R3

R4

L1

L2

C2

I2

Ом

Гн.

10-6Ф

?

328

395

118

215

24

24

19605

L1 e(t) L2

0100090000032a0200000200a20100000000a201000026060f003a03574d464301000000000001004ef50000000001000000180300000000000018030000010000006c0000000000000000000000080000001000000000000000000000009c160000e904000020454d4600000100180300001200000002000000000000000000000000000000900600001a040000b801000013010000000000000000000000000000c0b6060038320400160000000c000000180000000a0000001000000000000000000000000900000010000000dd00000030000000250000000c0000000e000080250000000c0000000e000080120000000c00000001000000520000007001000001000000f1ffffff00000000000000000000000090010000000000cc04400022430061006c006900620072006900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100dc5f11001000000040631100c060110052516032406311003860110010000000a8611100246311002451603240631100386011002000000049642f31386011004063110020000000ffffffff0c04e600d0642f31ffffffffffff0180ffff0180efff0180ffffffff0000000000080000000800004300000001000000000000006000000025000000372e9001cc00020f0502020204030204ef0200a07b20004000000000000000009f00000000000000430061006c00690062007200000000000000000000611100dee32e31e88d0832606411006c6011009c3827310800000001000000a8601100a8601100e878253108000000d06011000c04e6006476000800000000250000000c00000001000000250000000c00000001000000250000000c00000001000000180000000c00000000000002540000005400000000000000000000000800000010000000010000001886d1411886d141000000000d000000010000004c000000040000000000000000000000dd0000003000000050000000200000000900000046000000280000001c0000004744494302000000ffffffffffffffffde00000031000000000000004600000014000000080000004744494303000000250000000c0000000e000080250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c023000dd00040000002e0118001c000000fb021000070000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01000004000000020101001c000000fb02f1ff0000000000009001000000cc0440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010100040000002d010100040000002d010100050000000902000000020d000000320a0d0000000100040000000000dd00300020000900040000002d010000040000002d010000030000000000

    Построить математическую модель объекта управления в пространстве состояния.

0100090000032a0200000200a20100000000a201000026060f003a03574d464301000000000001004ef50000000001000000180300000000000018030000010000006c0000000000000000000000080000001000000000000000000000009c160000e904000020454d4600000100180300001200000002000000000000000000000000000000900600001a040000b801000013010000000000000000000000000000c0b6060038320400160000000c000000180000000a0000001000000000000000000000000900000010000000dd00000030000000250000000c0000000e000080250000000c0000000e000080120000000c00000001000000520000007001000001000000f1ffffff00000000000000000000000090010000000000cc04400022430061006c006900620072006900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100dc5f11001000000040631100c060110052516032406311003860110010000000a8611100246311002451603240631100386011002000000049642f31386011004063110020000000ffffffff0c04e600d0642f31ffffffffffff0180ffff0180efff0180ffffffff0000000000080000000800004300000001000000000000006000000025000000372e9001cc00020f0502020204030204ef0200a07b20004000000000000000009f00000000000000430061006c00690062007200000000000000000000611100dee32e31e88d0832606411006c6011009c3827310800000001000000a8601100a8601100e878253108000000d06011000c04e6006476000800000000250000000c00000001000000250000000c00000001000000250000000c00000001000000180000000c00000000000002540000005400000000000000000000000800000010000000010000001886d1411886d141000000000d000000010000004c000000040000000000000000000000dd0000003000000050000000200000000900000046000000280000001c0000004744494302000000ffffffffffffffffde00000031000000000000004600000014000000080000004744494303000000250000000c0000000e000080250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c023000dd00040000002e0118001c000000fb021000070000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010000040000002d01000004000000020101001c000000fb02f1ff0000000000009001000000cc0440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010100040000002d010100040000002d010100050000000902000000020d000000320a0d0000000100040000000000dd00300020000900040000002d010000040000002d010000030000000000

В схеме три элемента, запасающих энергию: , следовательно, математическая модель должна быть третьего порядка.

2. Построение математической модели.

Задаемся направлением контурных токов . Составляем три уравнения по второму закону Кирхгофа для контуров:

(1)

(2)

(3)

В уравнении (3) есть интеграл, поэтому дифференцируем его:

(3*)

В уравнениях (3*), (2), (3) есть производные, в качестве выбираем элементы с производными и производные берем на порядок ниже:

(4)

(5)

(6)

Запишем введенный вектор состояния в виде дифференциальных уравнений первого порядка.

Уравнение в пространстве состояний записывается в левой части:

В полученных уравнениях имеется шесть переменных . Необходимо уйти от , выразив их через

Из выражения (1) выразим :

Получили три дифференциальных уравнения и одно уравнение для выходного параметра.

Запишем полученную систему уравнений в матричном виде:

Получим матричное уравнение для выходной переменной:

    Построение сигнального графа.

Перепишем уравнения в общем, виде для построения графа системы:

Построение графа произведем в два шага:

Шаг 1. Ставим точки входа, выхода системы и векторы параметров

Шаг 2. Соединяем все параметры связями согласно системе уравнений.

Построим структурную схему.








e X >3> X >3> X >2> X >2> i>2>






X >1> X >1>

    Нахождение передаточной функции по формуле Мейсона.

k-количество возможных путей от входа к выходу

-определитель графа

P>k>-коэффициент передачи k пути от входа к выходу

-определитель всех касающихся контуров при удалении k-ого пути

=1-(сумма коэффициентов передачи всех отдельных контуров)+(сумма всевозможных произведений из двух некасающихся контуров) - (сумма всевозможных комбинаций из трех некасающихся контуров)+…+…

Последовательность нахождения w(p) по формуле Мейсона:

    В данном случае есть 1 путь от входа к выходу:

    В системе имеется 4 замкнутых контуров:

    Определитель системы включает 4 контура и 2 пары некасающихся контуров L>1>,L>2>; L>1>,L>4>

    Количество сомножителей равно количеству прямых путей. Выражение для записывается как выражение для , но разрываются контуры, через которые проходит прямой путь P>i>.

Сомножитель для первого пути. При размыкании первого пути 2 контура размыкаются, кроме L>2>,L>4>

    Запишем и преобразуем выражение передаточной функции:

Найдем переходную функцию и построим ее график:


Найдем амплитудно-частотную характеристику (АЧХ):

Найдем фаза частотную характеристику (ФЧХ):

Определим оценки качества системы: прямые и косвенные.

Прямые оценки определяются графически по графику переходного процесса.


Время переходного процесса: tn=11

Перерегулирование:

Колебательность: п=0,5

Время нарастания регулируемой величины: t=0,385

Время первого согласования: tm=0,66

Косвенные оценки качества системы определяются по графику АЧХ.

Колебательность:

Резонансная частота: wp=0,83

Частота среза: wсp=10

Полоса пропускания частот:

II-часть

Задание1: По заданной корреляционной функции Kx(t) определить спектральную плотность Sx(w) для белого шума, который подается на вход формирующего фильтра.

По данной корреляционной функции определим спектральную плотность:

Найдем корни характеристических уравнений передаточной функции фильтра:

Изобразим эти корни на комплекснрй плоскости:

Система будет устойчивой, если корни характеристического уравнения лежат во 2-ом квадранте, следовательно, условию устойчивости системы соответствуют корни:

P7= -0,583+7,05i

P9= - 0,550+9,98i

P10= -0,570

Из этого следует, что передаточная функция фильтра будет иметь

следующий вид:

С учетом фильтра наша схема будет иметь следующий вид:

Найдем переходную функцию данной системы, построим ее график и определим прямые оценки качества системы.

Вывод: По графику видно, что фильтр вносит в систему изменения, приводящие к неустойчивости системы. Вследствие чего оценки качества системы определить нельзя.