Биполярные транзисторы (работа 3)

Курс: Компьютерная системотехника

Тема: Биполярные транзисторы

1. Биполярные транзисторы

Определение.

Транзистор ППП с 3-мя электродами, служащий для усиления сигналов (в общем случае по мощности) или их переключения.

2. Типы биполярных транзисторов и их диодные схемы замещения

Различают кремниевые (рис.1) и германиевые транзисторы (рис.2).

Рис.1. Рис.2.

На рис.1 и 2 показаны условные графические обозначения кремниевых (n-p-n) и германиевых (p-n-p) транзисторов и соответствующие им диодные схемы замещения.

Транзистор состоит из двух противоположно включенных диодов, которые обладают одним общим n - или p - слоем. Электрод связанный с ним называется базой (Б). Дав других электрода называются эмиттером (Э) и коллектором (К). Диодная эквивалентная схема, приведенная рядом с его графическим обозначением, поясняет структуру включения переходов транзистора. Хотя эта схема не характеризует полностью функции транзистoра, но она дает возможность представлять действующие в нем обратные и прямые токи и напряжения.

3. Физические явления в транзисторах

Эмиттерная область транзистора является источником носителей заряда, а область улавливающая эти носители заряда называется коллектром. Область, которая управляет потоком этих носителей, называется базой.

При подключении прямого напряжения между эмиттером и базой происходит инжекция носителей зарядов через открытый (смещенный в прямом направлении) переход Э-Б, т.е. переход их из области эмиттера в область базы.

Таким образом образуется эмиттерный ток (Iэ) через соответсвующий переход (ЭП эмиттерный переход).

Как известно, при “дырочной" проводимости типа “p" основными носителями заряда являются “дырки”, а неосновными  электроны. Часть “дырок” пришедших в базовую область рекомбинируют в электроны, появляется ток базы (Iб), который очень мал по сравнению стоком эмиттера, так как только малая часть инжектированных “дырок” (носителей заряда) рекомбинирует.

Между коллектором и базой прикладывается обратное напряжение, поэтому говорят что носители заряда из области базы экстрагируются (втягиваются) в коллекторную область и за счет этого образуется ток коллектора (Iк).

Таким образом, на основании приведенных выше рассуждений можно записать следующие простые соотношения между токами эмиттера, базы и коллектора:

Iэ= Iб+Iк (1); Iб<<Iк (Iэ) (2); Iк  Iэ (3);

Iк =   = Iк / Iэ  (0,90,99) <1 (4);

Iк = Iэ + Iкбо (5),

где   Iэ  управляемый ток, Iкбо  неуправляемый (обратный) ток, протекающий через переход Б-К в направлении противоположном прямому току Iк через этот переход.

Iк =   = Iк / Iб (6);

Iк = Iб + Iкбо;

Uб  Uэ - Uэб (7);

 =  / 1 -  (8);

4. Подача напряжений питания

Обычно переход Э-Б смещен в прямом направлении, а К-Б  в обратном. Поэтому источники напряжений питания транзисторов должны быть включены, как показано на рис.3 и

Рис.3 Рис.4

Основная особенность транзисторов состоит в том, что коллекторный ток Iк является кратным базовому току Iб. Их отношение  = Iк / Iб называют коэфициентом усиления по току.

5. Схемы включения и статические параметры

Существуют три основные схемы включения транзисторов:

1)  ОЭ

2)  ОБ

3)  ОК

1) Схема с общим эмиттером применяется наиболее часто.

В этой схеме управляющее напряжение прикладывается к участку Б-Э, выходной сигнал снимается с резистора нагрузки, включенного в коллекторную цепь (потенциал эмиттера фиксирован).

Рис.5. Включение транзистора по схеме с ОЭ (а) и эквивалентная схема (б) для данного случая.

Вольт - амперные характеристики и режимы работы транзистора в данном случае приведены на рис.5.2.

Входные характеристики приведены на Рис.6а, выходные  на Рис.6б.

а) б)

Рис.6. Входные и выходные вольт - амперные характеристики транзистора включенного по схеме с ОЭ.

На семействе выходных характеристик выделяют три области:

1) Область линейного усиления;

2) Область наыщения:

3) Область отсечки.

В соответствии с этим транзистор может работать в трех режимах.

 В области линейного усиления, увеличение тока базы приводит к пропорциональному изменению тока коллектора, при этом динамическое сопротивление участка К-Э стремится к 

rкэ = vUк / vIк;

 В области насыщения, изменение тока коллектора не приводит к существенному изменению напряжения на коллекторе. Динамичнское сопротивление участка К-Э стремится к 0.

 В области отсечки Iк = Iкбо  0. Динамическое сопротивление сопротивление участка К-Э стремится к .

Величина Iк сверху ограничена допустимой рассеиваемой мощностью на участке К-Э. Превышение предельного тока Iк max ведет к разрушению транзистора, поэтому необходимо обеспечить схемные средства ограничения Iк. В простейшем случае это резистор в коллекторной (или эмиттерной) цепи фиксирующий ток коллектора на уровне Iк max = Eп / Rк. Но, в этом случае, потенциал коллектора изменяется при изменении тока коллектора (т.е. Uк = f (Iк)). Эта зависимость определяется так называемой нагрузчной прямой, отсекающей на осях координат два отрезка:

1) на оси абсцисс напряжение питания Еп при Iк = 0;

2) на оси ординат Iк max = Eп / Rк.

Пересечение нагрузочной прямой и выходной характеристики при конкретном токе базы дает, так называемую, рабочую точку.

Т.о. транзистор может работать в одном из следующих режимов (для n-p-n):

1) нормальный активный режим: Uбэ>0, Uкб>0

2) инверсный активный режим: Uбэ<0, Uкб<0

3) режим насыщения: Uбэ>0, Uкб<0

4) режим отсечки: Uбэ<0, Uкб>0

Нормальный активный режим.

В этом режиме переход Б-Э смещен в прямом направлении, а Б-К  в обратном.

При анализе основных схем включения транзисторов (здесь ОЭ, а далее ОБ и ОК) воспользуемся упрощенным (эквивалентным) представлением биполярного транзистора для низких частот, изображенном на рис.5. б.

Входная цепь представлена динамическим входным сопротивлением rбэ, а в коллекторной цепи использован управляемый источник тока коллектора (Iк = S  Uбэ),

где

При этом внутреннее динамическое сопротивление включено параллельно этому источнику тока, как и следует из теории электрических цепей (Теорема Теверена об эквивалентном генераторе). При определении основных характеристик и параметров схемы здесь и далее будем считать, что идеальные источники напряжений питания (Еп) и входного сигнала (Uвх).

Ток коллектора

1) Iк =  / 1 -   Iб + 1/1 -   Iкбо =   Iб + (1+)  Iкбо    Iб,

где:   коэфициент передачи по току (т.е. коэфициент передачи тока из эмиттерной цепи в коллекторную) в схеме с ОЭ. Т. к. >>1, то в схеме с ОЭ возможно усиление по току (потому, что Iб<<Iк!).

2) Ток базы закрытого транзистора. При Uбэ = 0 (транзистор закрыт) Iб  Iкбо, т.е. из базы вытекает ток,  обратному тепловому току перехода К-Б.

3) Входное сопротивление

Тогда ток базы, который также зависит и от Uбэ можно примерно определить так:

Iб = Iк  , где  = h>21 э>

4) Коэфициент усиления по напряжению

5) Коэфициент усиления по току

6) Выходное сопротивление

Режим насыщения

В этом режиме оба перехода смещены в прямом направлении.

Внешним проявлением режима насыщения является отсутствие зависимости Iк от Iб. Для схемы с ОЭ существует некоторый “граничный” ток Iбн, при котором достигается насыщение коллекторного тока

Iкн =   Iбн

При дальнейшем увеличении тока базы ток коллектора не увеличивается и может быть введен некоторый коэфициент, характеризующий:

1) Степень насыщения

N = Iб / Iбн  Iкн = N  Iк

2) Входное сопротивление

Rвх> = Rвх / ,

где Rвх  входное сопротивление в активной линейной области.

3) Выходное напряжение

Uвых = Uкэн  Uбэ

Это так называемое остаточное напряжение на участке К - Э, слабо зависящее от величины коллекторного тока.

4) Выходное сопротивление

Rвых  rкэ  Rвых /   Rк / ,

где Rвых  выходное сопротивление в активной линейной области.

Режим отсечки

В этом режиме оба перехода смещены в обратном направлении.

1) Iэ  0

2) Iк  Iкбо

3) Iб   Iкбо

Границей режима отсечки является обратное напряжение (напряжение отсечки) на переходе Б-Э (Uбэ>обр>), при котором Iэ = 0!

В большинстве цифровых схем Uбэ>обр> такое, при котором Iб уменьшается в 100200 раз!!

2) Схема с общей базой

В этой схеме управляющее напряжение прикладывается к участку Э-Б, а входной сигнал снимается с резистора нагрузки, вкюченного в коллекторную цепь. Потенциал базы при этом фиксирован, а потенциал Э должен быть меньше потенциала Б, если переход Б-Э смещен в прямом направлении.

а) б)

Рис.7

На рис.7 показана схема включения транзистора с ОБ и ее эквивалентная схема на низких частотах.

Вольт амперная характеристика и режимы работы

а) б)

Рис.8 Входные а) и выходные б) характеристики.

Нормальный активный режим.

В этом режиме, как и в схеме с ОЭ, переход Б-Э смещен в прямом направлении, переход К-Б в  обратном.

1) Iк =   Iэ + Iко (eUкб/Uт 1) =   Iэ + Iкбо    Iэ

Т. к. <1, то усиление по току в такой схеме невозможно Iк =   Iб.

2)

3) Ki =   1

4) Rвх  rбэ / Uвх /  Iвх, т.е. в  раз меньше чем всхеме с ОЭ!!

5)

,

т.е. такое же как и в схеме с ОЭ.

Режим насыщения

в данной схеме возможно только при Uк < Uб, что недостижимо при фиксированной полярности питания. Т.е. режима насыщения нет.

3) Схема с общим коллектором

Это по сути частный случай схемы с ОЭ при Rк = 0! Поэтому, практически все соотношения для токов транзистора и потенциалов на его переходах, характерные для схемы с ОЭ, могут быть применим и в данном случае.

В этой схеме управляющее напряжение приложено к участку Б-Э, выходной сигнал снимается с резистора нагрузки, включенного в эмиттерную цепь. Потенциал коллектора при этом фиксирован!

Причем, в этой схеме, также как и в схеме с ОБ, отсутствует режим насыщения, поскольку потенциал коллектора никогда не может быть ниже потенциала базы!!

Параметры схемы в режиме отсечки аналогичны таковым в схеме с ОЭ!!

На рис.8 приведены схема включения и ее эквивалентная схема.

Рис.8

1)

2)

3) Rвх = rбэ +   Rэ, т.е. во много раз больше чем Rвх в схемах с ОЭ и ОБ! (десятки и сотни кОм).

4)

Т. е. такая схема имеет высокий Ki, малое Rвых и большое Rвх!!

6. h и Y параметры транзисторов

Транзистор можно рассматривать как четырехполюсник где

Uвх = U>1,>Iвх = I>1>, Uвых = U>2>, Iвых = I>2>.

h>11>>> >= Uбэ / Iбэ  Uк = const = Rвх

h>12>>> >= Uбэ / Uк Iб = const 

коэффициент внутренней ОС (очень малая величина, которой в инженерной практике пренебрегают и принимают = 0)

h>21>>> >= Iк / Iб Iб = const = 

h>22>> = Iк / Uк Iб = const 

Выходная проводимость

([Сименс] = 1/Ом)

Rвых = 1/ h>22э>

В настоящее время для практических расчетов h и y параметры практически не используются!

7. Влияние температуры на статистические характеристики транзистора. Динамические параметры

Это параметры, которые совместно с такими же параметрами других компонентов схемы определяют вид АЧХ линейной схемы или характер переходных процессов в ключевых схемах.

Частотные свойства транзистора в активном режиме определяются:

инерционностью процессов распространения подвижных носителей в транзисторной структуре (в основном на базе);

наличием емкостей переходов (в частности барьерной емкостью коллекторного перехода) и конечным значением внутренних сопротивлений;

эффектами накопления и рассеивания зарядов.

Обычно, для упрощения анализов динамических процессов, большую часть источников инерционности процессов в транзисторе сводятся к эквивалентным емкостям (зависящим, в общем случае, от напряжения и частоты). За счет этого получают достаточно простые эквивалентные схемы транзистора на переменном токе, приведенные на рис.5.6.

Рис.9. Эквивалентные схемы для активного режима а) и режима отсечки б).

Коэффициент передачи по току может быть представлен характеристикой ФНЧ первого порядка

,

где >>  частота среза.

Во временной области эта зависимость имеет вид:

,

где >> = 1/>>  постоянная времени изменения коэффициента передачи по току.

Граничной частотой усиления (или “частотой единичного усиления”) называют частоту, при которой модуль коэффициента усиления уменьшается до

В практических в расчетах используется соотношение

>гр> =   >>

>> = >> / (1+) или >> = (1+) >>    >>,

где >> = 1/2f>>, f>>  граничная частота усиления для схемы с ОЭ, которая приводится обычно в справочных данных!

Кроме f>> в справочных данных приводятся значения >> и >>, а также величины емкостей эмиттерного (С*>эо>) и коллекторного (С*>ко>) переходов при Uкб=0, Uэб=0, Uкк и Uэк  контактная разность потенциалов переходов К-Б и Э-Б.

Особенности переходных процессов в ключевом режиме работы транзистора включенного, например, по схеме с ОЭ заключается в наличии времени рассасывания заряда неосновных носителей, накопленного в базе при протекании тока в отрытом и насыщенном состоянии. Причем, с увеличением Iкн увеличивается р!

Iк (t) =  (t)  Iб

Iкн = >  Iбн  Iбн = S  Iбо

9. Предельно допустимые параметры

1) Uэб>обр>  электрический (Зенеровский) или тепловой пробой перехода Б-Э

2) Uкб>обр>

Это max допустимые обратные напряжения на переходах Э-Б и К-Б. Причем,

Uэб>обр> < Uкб>обр> (иногда в 2 раза!)

3) Uкэ>max>

4) Pр>max>  максимально допустимая рассеиваемая мощность

Pр  Uкэ  Iк

В паспорте обычно указывается Pр>max> при температуре корпуса, равной 25оС. С увеличением tоС необходимо уменьшение Pр ниже Pр>max>!

Литература

    Волович Г.И. Схемотехника аналоговых и аналого-цифровых электронных устройств. М., 2005. - 530с.

    Лысенко А.П. Статический коэффициент передачи тока базы транзистора и его зависимость от режима и температуры. Учебное пособие - Московский государственный институт электроники и математики. М., 2005. - 29 с.

    Нефедов А.В. Интегральные микросхемы и их зарубежные аналоги. Справочник. Том 1. Издательство: РадиоСофт, 2000. - 512с.

    Петухов В.М. Биполярные транзисторы средней и большой мощности сверхвысокочастотные и их зарубежные аналоги. Справочник. Том 4. Издательство: КУбК-а, 1997. - 544с.

    Чижма С.Н. Основы схемотехники. СПб., 2008. - 424с.