Факторный анализ (работа 1)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра МО САПР

Использование факторного анализа для построения рейтинга банков.

Курсовая работа

студентов второй группы

третьего курса

факультета прикладной

математики и информатики

Бескоровайного А.А. и

Лейнова В. А.

Научный руководитель:

Ковалев М.М.

Минск, 1997.

Содержание

Введение

3

Методология факторного анализа

4

Описание программы

8

Приложение

9

Формат файлов

9

Таблица исходных данных

9

Факторная матрица

10

Матрица факторного отображения

11

Графическое представление

12

Введение

В факторном анализе предполагается, что наблюдаемые переменные являются линейной комбинацией некоторых латентных (гипотетических или ненаблюдаемых) факторов. Некоторые из этих факторов допускаются общими для двух и более переменных, а другие -- характерными для каждого параметра в отдельности.

Применительно к построению банковских рейтингов реальную картину состояния дает методика, основанная на применении двухфакторного анализа, которая позволяет представить банки точками на плоскости, координатными осями которой являются [построенные] факторы, что особенно удобно для составления динамических рейтингов, когда при анализе состояния системы во времени точки, указывающие на состояние банков, превращаются в диаграммы.

Методология факторного анализа.

Необходимо попытаться наиболее полно проанализировать разнообразные показатели, характеризующие в нашем случае состояние банков. Для этого необходимо свести их к меньшему числу некоторых факторов. Представим каждый рейтинговый показатель z>j> как линейную комбинацию гипотетических факторов:

Z>j>=a>j1>F>1>+a>j2>F>2>+...+a>jm>F>m> (j=1,2...n), где

F>i> – значение i-го фактора для данной (j-ой) компоненты;

a>ji>> >вес фактора i в компоненте j;

m – количество факторов;

n – количество показателей.

Можно выделить следующие этапы построения факторной матрицы:

    Создаем исходную матрицу {{x>ij>}} размерности (n >*> m), где m – количество характеристик, а n – количество исследуемых банков.

    Строим корреляционную матрицу R={{r>ij>}},

имеющую размерность m> *> m:

      Строим ковариационную матрицу: C=XT>*>X/n :

      Строим корреляционную матрицу:

R={{r>ij>}},

2
.3 На основе построенной корреляционной матрицы строим редуцированную корреляционную матрицу:

3
. В методе главных факторов на 1-ом этапе вычислений ищут коэффициенты при первом факторе так, чтобы сумма вкладов в суммарную общность была максимальной

Максимум V>1> должен быть обеспечен при условии

Чтобы максимизировать функцию n переменных воспользуемся методом множителей Лагранжа, с помощью которого приходим к выводу, что искомая функция является ничем иным как максимальным собственным значением уравнения

det(R-E)=0 (2),

где R- редуцированная корреляционная матрица, полученная в пункте 2.

Далее, подставив найденное значение >1> и получив одно из возможных решений (q>11> ,q>21, ... ,>>>q>n1) >уравнения (2), являющихся в свою очередь собственным вектором, соответствующим данному собственному значению и, для удовлетворения выражению (1), разделив на корень из суммы их квадратов и умножив на квадратный корень из собственного значения, получим

что представляет собой искомый коэффициент при факторе F>1> в факторном отображении пункта 1.

>1 >вычисляется по формуле:

>1>=max{p>1j>}, где вектор p=R>*>q>1>

Вектор q>1> находится при помощи следующего итерационного процесса:

Вычисляем R, R2, R4,... до тех пор, пока не будет выполняться условие |(i)-(i/2)|<, где (i) вектор, j-ый элемент которого равен частному от деления суммы j-ой строки матрицы Ri на максимальную из сумм элементов строк матрицы Ri , а в качестве  берется заранее выбранная точность вычислений. По окончании процесса в качестве вектора q берется вектор a(i).

4
.Для определения коэффициентов при втором факторе F>2> необходимо максимизировать функцию

что делается аналогично вычислениям для 1-го фактора, только вместо матрицы R используется матрица

Полученную факторную матрицу  размерности m>*>2 вращаем путем умножения на матрицу поворота

,

где -угол поворота, изменяющийся от 0 до /2 с шагом /720.

О
кончательный поворот будет произведен на угол, при котором выполнится критерий Варимакс:

Где r — число факторов.

Умножив справа исходную матрицу Х на построенную >пов>, получим окончательную матрицу, показывающую расположение банков в новых координатах (факторах F>1> , F>2>).

Описание программы.

Для компьютерной реализации описанного выше метода нами, с помощью среды Delphi 2.0, была создана программа rating, функционирующая под управлением операционной системы Windows-95.

1. После запуска программа предлагает пользователю загрузить исходные данные о состоянии банков за некоторые периоды времени. Исходные файлы хранятся в специальном формате (см. приложение 1).

    Данные загружаются в таблицы (по годам), где и могут быть просмотрены (см. приложение 2)

В прилагаемом ниже примере исходными данными является файл по состоянию на 1995 код со следующими показателями, характеризующими банки :

a1=Активы

a2=Капитал

a3=Капитал/активы в %

a4=.Вложения в другие банки

a5=Вложения в экономику

a6=Вложения всего

    По нажатию соответствующей кнопки на панели управления программой, будут построены и отображены матрицы факторного отображения (см приложение 4) ,за каждый из периодов времени. Данные матрицы образуются из факторных матриц, описывающих вклад каждого из показателей в общий фактор (см. приложение 3)

    По желанию пользователя может быть построен график, показывающий положение банков на факторной плоскости и динамику их развития во времени (см. приложение 5).

Приложение.

1. Формат файлов

Файлы, используемые в нашей программе представляют собой текстовые файлы, в которых в качестве разделителей используются пробелы.

В первом столбце файла хранятся названия обрабатываемых банков, а в первой строке – названия показателей, характеризующих их деятельность.

2. Таблица исходных данных



3. Факторная матрица

Показатель

F1

F2

a1=Активы

0.940

0.264

a2=Капитал

0.949

0.198

a3=Капитал/активы в %

0.829

0.436

a4=Вложения в другие банки

0.602

0.539

a5=Вложения в экономику

0.834

0.425

a6=Вложения всего

0.922

0.335

4
.Матрица факторного отображения

5. Графическое представление

П
рямоугольной областью обозначается положение банка на факторной плоскости по состоянию на 1995 год, а круглой областью такого же цвета обозначается положение того же банка по состоянию на 1996 год.