Оценка уровня шума в помещении. Расчет средств защиты от шума
Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Тульский государственный университет
Кафедра аэрологии, охраны труда и окружающей среды
Контрольно-курсовая работа
по дисциплине «Безопасность жизнедеятельности»
на тему: «Оценка уровня шума в помещении.
Расчет средств защиты от шума»
Тула, 2007.
СОДЕРЖАНИЕ
Исходные данные………………………………………………………….…..….3
1. Расчет ожидаемых уровней звукового давления в расчетной точке и требуемого снижения уровней шума……………..………………………..…….4
2. Расчет звукоизолирующих ограждений, перегородок……………………….6
3. Звукопоглощающие облицовки………………………………….………..…..7
4. Список используемой литературы……………………………………………9
Дано: В рабочем помещении длиной А м,
шириной В м, и высотой Н м
размещены
источники шума – ИШ1, ИШ2, ИШ3, ИШ4 и ИШ5 с
уровнями звуковой мощности. Источник
шума ИШ1 заключен в кожух. В конце цеха
находится помещение вспомогательных
служб, которое отделено от основного
цеха перегородкой с дверью площадью.
Расчетная точка находится на расстоянии
г от источников шума. S>т>
= 2,5м2
РАССЧИТАТЬ:
Уровни звукового давления в расчетной точке - РТ, сравнить с допустимыми по нормам, определить требуемое снижение шума на рабочих местах.
Звукоизолирующую способность перегородки и двери в ней, подобрать материал для перегородки и двери.
Звукоизолирующую способность кожуха для источника ИШ1. Источник шума установлен на полу, размеры его в плане - (а х b) м, высота - h м.
4. Снижение шума при установке на участке цеха звукопоглощающей облицовки. Акустические расчеты проводятся в двух октавных полосах на среднегеометрических частотах 250 и 500Гц.
Исходные данные
Величина |
250Гц |
500Гц |
Величина |
250Гц |
500Гц |
L>Р1> |
109 |
112 |
Δ1 |
8х10^10 |
1,6х10^11 |
L> Р2> |
99 |
97 |
Δ2 |
8х10^9 |
5х10^9 |
L> Р3> |
95 |
98 |
Δ3 |
3,2х10^9 |
6,3х10^9 |
L> Р4> |
93 |
100 |
Δ4 |
2х10^9 |
1х10^10 |
L> Р5> |
109 |
112 |
Δ5 |
8х10^10 |
1,6x10^11 |
А= |
35 м ; |
С= |
8м; |
r >1> = |
7,5 м ; |
r>3> = |
8,0 м ; |
r>5>= 14 м ; |
В= |
20 м ; |
Н= |
9 м ; |
r>2> = |
11 м ; |
r>4> = |
9,5 м ; |
L>МАКС=>1,5 м |
1. Расчет ожидаемых уровней звукового давления в расчетной точке и требуемого снижения уровней шума.
Если в помещение находится несколько источников шума с разными уровнями излучаемой звуковой мощности, то уровни звукового давления для среднегеометрических частот 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и расчетной точке следует определяет по формуле:
Здесь:
L - ожидаемые октавные уровни давления в расчетной точке, дБ; χ - эмпирический поправочный коэффициент, принимаемый в зависимости от отношения расстояния rот расчетной точки до акустического центра к максимальному габаритному размеру источника 1макс, рис.2 (методические указания). Акустическим центром источника шума, расположенного на полу, является проекция его геометрического центра на горизонтальную плоскость. Так как отношение r/lмакс во всех случаях, то примем и
определяется по табл. 1 (методические указания). Lpi - октавный уровень звуковой мощности источника шума, дБ;
Ф - фактор направленности; для источников с равномерным излучением принимается Ф=1; S - площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку. В расчетах принять, где r - расстояние от расчетной точки до источника шума; S = 2πr2
|
= 2πr2 = |
2 |
x |
3,14 |
x |
7,5 |
2 = 353,25 м2 |
|
= 2πr2 = |
2 |
x |
3,14 |
x |
11 |
2 = 759,88 м2 |
|
= 2πr2 = |
2 |
x |
3,14 |
x |
8 |
2 = 401,92 м2 |
|
= 2πr2 = |
2 |
x |
3,14 |
x |
9,5 |
2 = 566,77 м2 |
|
= 2πr2 = |
2 |
x |
3,14 |
x |
14 |
2 = 1230,88 м2 |
ψ- коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый по графику рис.3 (методические указания) в зависимости от отношения постоянной помещения В к площади ограждающих поверхностей помещения
В - постоянная помещения в октавных полосах частот, определяемая по формуле , где по табл. 2 (методические указания) ; м - частотный множитель определяемый по табл. 3 (методические указания).
м
Для 250 Гц: μ=0,55 ; м3
Для 250 Гц: μ=0,7 ; м3
Для 250 Гц: ψ=0,93
Для 250 Гц: ψ=0,85
т - количество источников шума, ближайших к расчетной точке, для которых (*). В данном случае выполняется условие для всех 5 источников, поэтому т =5.
n- общее количество источников шума в помещении с учетом коэффициента
одновременности их работы.
Найдем ожидаемые октавные уровни звукового давления для 250 Гц:
L = 10lg ( 1x8x10/ 353,25 +1x8x10/ 759,88 + 1x3,2x10/ 401,92 + 1x2x10/ 566,77 +1x8x10/ 1230,88 + 4 х 0,93 х(8x10 + 8x10+
+3,2x10+2x10 +8x10) / 346,5 )= 93,37дБ
Найдем ожидаемые октавные уровни звукового давления для 500 Гц:
L= 10lg (1x1,6x10/ 353,25 + 1x5x10/ 759,88 + 1x6,3x10/ 401,92 +
+1x 1x10/ 566,77 + 1x1,6x10 / 1230,88 + 4 х 0,85 х(1,6x10 + 5x10+
+6,3x10+ 1x10+1,6x10) / 441)= 95,12 дБ
Требуемое снижение уровней звукового давления в расчетной точке для восьми
октавных полос по формуле:
, где
-требуемое снижение уровней звукового давления, дБ;
- полученные расчетом октавные уровни звукового давления, дБ;
L>доп> - допустимый октавный уровень звукового давления в изолируемом от шума
помещений, дБ, табл. 4 (методические указания).
Для 250 Гц : ΔL = 93,37 - 77 = 16,37 дБ Для500 Гц : ΔL = 95,12 - 73 = 22,12 Дб
2.Расчет звукоизолирующих ограждений, перегородок.
Звукоизолирующие ограждения, перегородки применяются для отделения «тихих» помещений от смежных «шумных» помещений; выполняются из плотных, прочих материалов. В них возможно устройство дверей, окон. Подбор материала конструкции производится по требуемой звукоизолирующей способности, величина которой определяется по формуле:
, где
-суммарный октавный уровень звуковой мощности
излучаемой всеми источниками определяемый с помощью табл. 1 (методические указания).
Для250Гц: дБ
Для 500 Гц:
дБ
B>и> – постоянная изолируемого помещения
В>1000>=V/10=(8x20x9)/10=144 м2
Для 250 Гц: μ=0,55 B>И>=В>1000>·μ=144·0,55=79,2 м2
Для 500 Гц: μ=0,7 B>И>=В>1000>·μ=144·0,7=100,8 м2
т - количество элементов в ограждении (перегородка с дверью т=2) S>i>- площадь элемента ограждения
S>стены> = ВхН - S>двери> = 20 · 9 - 2,5 = 177,5 м2
Для 250 Гц:
R>треб.стены> = 112,4 - 77 – 10lg79,2 + 10lg177,5 + 10lg2 = 41,9 дБ
R>треб.двери> = 112,4 - 77 – 10lg79,2 + 10lg2,5 + 10lg2 = 23,4 дБ
Для 500 Гц:
R>треб.стены> = 115,33 - 73 – 10lg100,8 + 10lg177,5 + 10lg2 = 47,8 дБ
R>треб.двери> = 112,4 - 73 – 10lg100,8 + 10lg2,5 + 10lg2 = 29,3 дБ
Звукоизолирующее ограждение состоит из двери и стены, подберем материал
конструкций по табл. 6 (методические указания).
Дверь - глухая щитовая дверь толщиной 40мм, облицованная с двух сторон фанерой толщиной 4мм с уплотняющими прокладками .Стена - кирпичная кладка толщиной с двух сторон в 1 кирпич.
3.3вукопоглащающие облицовки
Применяются для снижения интенсивности отраженных звуковых волн.
Звукопоглощающие облицовки (материал, конструкция звукопоглощения и т.д.) следует производить по данным табл. 8 в зависимости от требуемого снижения шума.
Величина возможного максимального снижения уровней звукового давления в расчетной точке при применении выбранных звукопоглощающих конструкций определяется по формуле:
В -постоянная помещения до установки в нем звукопоглощающей облицовки.
B>1> - постоянная помещения после установки в нем звукопоглощающей конструкции и определяется по формуле:
A=α( S>огр >- S>обл)>) - эквивалентная площадь звукопоглощения поверхностей не занятых звукопоглощающей облицовкой;
α -средний коэффициент звукопоглощения поверхностей не занятых звукопоглощающей облицовкой и определяется по формуле:
Для 250Гц: α = 346,5 / ( 346,5 + 2390 ) = 0,1266
Для 500 Гц: α = 441 / ( 441 + 2390 ) = 0,1558
Sобл - площадь звукопоглощающих облицовок
Sобл =0,6 S>огр> = 0,6 х 2390 = 1434 м 2 Для 250 Гц: А>1> = 0,1266 ( 2390 - 1434 ) = 121,03 м2 Для 500 Гц : А>1> = 0,1558 ( 2390 - 1434 ) = 148,945 м2
ΔА - величина добавочного звукопоглощения, вносимого конструкцией звукопоглощающей облицовки, м2 определяется по формуле:
- реверберационный коэффициент звукопоглощения выбранной конструкции облицовки в октавной полосе частот, определяемый по табл.8 (методические указания). Выбираем супертонкое волокно,
ΔА = 1 х 1434 =1434 м 2
конструкциями, определяемый по формуле:
Для 250 Гц : = ( 121,03 + 1434 ) / 2390 = 0,6506 ;
В>1>= ( 121,03 + 1434 ) / ( 1 - 0,6506 ) = 4450,57 м 2
ΔL= 10lg ( 4450,57 х 0,93 / 346,5 х 0,36 ) = 15,21 дБ '.
Для 500 Гц : = ( 148,945 + 1434 ) / 2390 = 0,6623 ;
В>1> =( 148,945 + 1434 ) / ( 1 - 0,6623 ) = 4687,43 м 2
ΔL = 10lg ( 4687,43 х 0,85 / 441 х 0,35 ) = 14,12 дБ.
Для 250 Гц и 500 ГЦ выбранная звукопоглощающая облицовка не будет обеспечивать необходимое снижение уровня шума в октавных полосах частот так как:
Дано: В рабочем помещении длиной А м,
шириной В м, и высотой Н м
размещены
источники шума – ИШ1, ИШ2, ИШ3, ИШ4 и ИШ5 с
уровнями звуковой мощности. Источник
шума ИШ1 заключен в кожух. В конце цеха
находится помещение вспомогательных
служб, которое отделено от основного
цеха перегородкой с дверью площадью.
Расчетная точка находится на расстоянии
г от источников шума.
S>т> = 2,5м2
Рассчитать:
Уровни звукового давления в расчетной точке - РТ, сравнить с допустимыми по нормам, определить требуемое снижение шума на рабочих местах.
Звукоизолирующую способность перегородки и двери в ней, подобрать материал для перегородки и двери.
Звукоизолирующую способность кожуха для источника ИШ1. Источник шума установлен на полу, размеры его в плане - (а х b) м, высота - h м.
4. Снижение шума при установке на участке цеха звукопоглощающей облицовки. Акустические расчеты проводятся в двух октавных полосах на среднегеометрических частотах 250 и 500Гц.
Исходные данные:
-
Величина
250Гц
500Гц
Величина
250Гц
500Гц
L>Р1>
103
100
Δ>1>
2х1010
1х1010
L> Р2>
97
92
Δ>2>
5х109
1,6х109
L> Р3>
100
99
Δ>3>
1х1010
8х109
L> Р4>
82
82
Δ>4>
1,6х108
1х108
L> Р5>
95
98
Δ>5>
>5>
3,2х109
1,6x109
-
А=
35 м ;
С=
9м;
r >1> =
8 м ;
r>3> =
10 м ;
r>5>= 14 м ;
В=
24 м ;
Н=
9 м ;
r>2> =
9 м ;
r>4> =
9 м ;
L>МАКС=>1,5 м
1. Расчет ожидаемых уровней звукового давления в расчетной точке и требуемого снижения уровней шума.
Если в помещение находится несколько источников шума с разными уровнями излучаемой звуковой мощности, то уровни звукового давления для среднегеометрических частот 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц и расчетной точке следует определяет по формуле:
Здесь:
L - ожидаемые октавные уровни давления в расчетной точке, дБ; χ - эмпирический поправочный коэффициент, принимаемый в зависимости от отношения расстояния rот расчетной точки до акустического центра к максимальному габаритному размеру источника 1макс, рис.2 (методические указания). Акустическим центром источника шума, расположенного на полу, является проекция его геометрического центра на горизонтальную плоскость. Так как отношение r/lмакс во всех случаях, то примем и
определяется по табл. 1 (методические указания). Lpi - октавный уровень звуковой мощности источника шума, дБ;
Ф - фактор направленности; для источников с равномерным излучением принимается Ф=1; S - площадь воображаемой поверхности правильной геометрической формы, окружающей источник и проходящей через расчетную точку. В расчетах принять, где r - расстояние от расчетной точки до источника шума; S = 2πr2
|
= 2πr2 = |
2 |
x |
3,14 |
x |
8 |
2 = 402,12 м2 |
|
= 2πr2 = |
2 |
x |
3,14 |
x |
9 |
2 = 508,12 м2 |
|
= 2πr2 = |
2 |
x |
3,14 |
x |
10 |
2 = 628,32 м2 |
= 2πr2 = |
2 |
x |
3,14 |
x |
9 |
2 = 508,12 м2 |
|
= 2πr2 = |
2 |
x |
3,14 |
x |
14 |
2 = 1231,5 м2 |
ψ- коэффициент, учитывающий нарушение диффузности звукового поля в помещении, принимаемый по графику рис.3 (методические указания) в сти от отношения постоянной помещения В к площади ограждающих поверхностей помещения
В - постоянная помещения в октавных полосах частот, определяемая по формуле, где по табл. 2 (методические указания) ;
μ - частотный множитель определяемый по табл. 3 (методические указания).
м
Для 250 Гц: μ=0,55 ; м3
Для 250 Гц: μ=0,7 ; м3
Для 250 Гц: ψ=0,98
Для 500 Гц: ψ=0,91
m - количество источников шума, ближайших к расчетной точке, для которых (*). В данном случае выполняется условие для всех 5 источников, поэтому m=5.
n- общее количество источников шума в помещении с учетом коэффициента
одновременности их работы.
Найдем ожидаемые октавные уровни звукового давления для 250 Гц:
L = 10lg ( 1x2x10/402.12 +1x5x10/508.12 + 1x1x1010/628.32 +
+ 1x1.6x108/508.12 +1x3.2x1010/ 1231.5 + 4 х 0,98 х(2x10 + 5x10+1x1010+1.6x108 +3.2x109) / 415.8 )= 86.51дБ
Найдем ожидаемые октавные уровни звукового давления для 500 Гц:
L= 10lg (1x1x1010/402.12 + 1x1.6x10/508.12 + 1x8x10/628.32 +
+1x 1.6x108/ 508.12 + 1x6.3x10 9 / 1231.5 + 4 х 0,91х(1x1010 + 1.6x10+
+8x109+ 1.6x108+6.3x109 )/529.2 )= 82.94 дБ
Требуемое снижение уровней звукового давления в расчетной точке для восьми
октавных полос по формуле:
,
– требуемое снижение уровней звукового давления, дБ;
- полученные расчетом октавные уровни звукового давления, дБ;
L>доп> - допустимый октавный уровень звукового давления в изолируемом от шума
помещений, дБ, табл. 4 (методические указания).
Для 250 Гц ΔL = 86,51 - 68 = 18,51 дБ Для500 Гц: ΔL = 82,94 - 63 = 19,94дБ
2.Расчет звукоизолирующих ограждений, перегородок.
Звукоизолирующие ограждения, перегородки применяются для отделения «тихих» помещений от смежных «шумных» помещений; выполняются из плотных, прочих материалов. В них возможно устройство дверей, окон. Подбор материала конструкции производится по требуемой звукоизолирующей способности, величина которой определяется по формуле:
, где
-суммарный октавный уровень звуковой мощности
излучаемой всеми источниками определяемый с помощью табл. 1 (методические указания).
Для250Гц: дБ
Для 500 Гц:
дБ
B>и> – постоянная изолируемого помещения
В>1000>=V/10=АхВхН/10=(9x24x9)/10=194,4 м2
Для 250 Гц: μ=0,55 B>И>=В>1000>·μ=194,4·0,55=106,92 м2
Для 500 Гц: μ=0,7 B>И>=В>1000>·μ=194,4·0,7=136,08 м2
т - количество элементов в ограждении (перегородка с дверью т=2) S>i>- площадь элемента ограждения
S>стены> = ВхН - S>двери> = 24 · 9 - 2,5 = 213,5 м2
Для 250 Гц:
R>треб.стены> = 105,84 - 68 – 10lg106,92 + 10lg213,5+ 10lg2 = 41,14дБ
R>треб.двери> = 105,84 - 68 – 10lg 106,92 + 10lg2,5 + 10lg2 = 26,79 дБ
Для 500 Гц:
R>треб.стены> = 104,16- 63 – 10lg136,08 + 10lg213,5 + 10lg2 = 51,13 дБ
R>треб.двери> = 104,16- 63 – 10lg136,08 + 10lg2,5 + 10lg2 = 26,81 дБ
Звукоизолирующее ограждение состоит из двери и стены, подберем материал конструкций по табл. 5 и табл. 6 (методические указания).
Перегородка – шлакобетонная панель толщиной 250 мм. Дверь - глухая щитовая толщиной 40мм, облицованная с двух сторон фанерой толщиной 4мм, облицованная с 2 сторон фанерой толщиной 4 мм, с уплотняющими прокладками .
3.3вукопоглащающие облицовки
Применяются для снижения интенсивности отраженных звуковых волн.
Звукопоглощающие облицовки (материал, конструкция звукопоглощения и т.д.) следует производить по данным табл. 8 в зависимости от требуемого снижения шума.
Величина возможного максимального снижения уровней звукового давления в расчетной точке при применении выбранных звукопоглощающих конструкций определяется по формуле:
В -постоянная помещения до установки в нем звукопоглощающей облицовки.
B>1> - постоянная помещения после установки в нем звукопоглощающей конструкции и определяется по формуле:
A=α( S>огр >- S>обл)> ) - эквивалентная площадь звукопоглощения поверхностей не занятых звукопоглощающей облицовкой;
α -средний коэффициент звукопоглощения поверхностей не занятых звукопоглощающей облицовкой и определяется по формуле:
Для 250Гц: α = 415,8 / (415,8 + 2742 ) = 0,132
Для 500 Гц: α = 529,2 / ( 529,8 + 2742 ) = 0,081
Sобл - площадь звукопоглощающих облицовок
Sобл =0,6 S>огр> = 0,6 х 2742 =1645,2 м 2
Для 250 Гц : А>1> = 0,132 * ( 2742 - 1645,2 ) = 144,78 м2
Для 500 Гц : А>1> = 0,081 * (2742 - 1645,2) = 88,72 м2
ΔА - величина добавочного звукопоглощения, вносимого конструкцией звукопоглощающей облицовки, м2 определяется по формуле:
- реверберационный коэффициент звукопоглощения выбранной конструкции облицовки в октавной полосе частот, определяемый по табл.8 (методические указания).
В качестве звукоизолирующего материала выбираем супертонкое волокно с оболочкой из стеклоткани и покрытием из гипсовой плиты толщиной 7 мм с перфорацией.
ΔА = 1 х 1645,2 = 1645,2 м 2
конструкциями, определяемый по формуле:
Для 250 Гц : = (144,78 + 1645,2) / 2742 = 0,653 ;
В>1>= (144,78 + 1645,2) / (1 - 0,653) = 5155,49м 2;
В>1>/S>огр> = 5155,49/2742=1,88 → ψ=0,32
ΔL= 10lg (5155,49 х 0,98 / 415,8 х 0,32) = 15,79 дБ '.
Для 500 Гц : = (88,72 + 1645,2) / 2742= 0,632 ;
В>1> =( 88,72 + 1645,2)/ ( 1 - 0,632) = 4711,74 м 2
В>1>/S>огр> = 4711,74 /2742=1,72→ ψ=0,32
ΔL = 10lg (4711,74 х 0,91 / 529,2 х 0,32) = 14,03 дБ.
Для 250 Гц и 500 ГЦ выбранная звукопоглощающая облицовка не будет обеспечивать необходимое снижение уровня шума в октавных полосах частот,требуются специальные меры для снижение уровня шума так как:
,
Для 250 Гц : 15,79 дБ < 18,51 дБ
Для500 Гц : 14,03 дБ < 19,94 дБ
4. Список используемой литературы.
1. Лабораторный практикум по дисциплине «Безопасность жизнедеятельности» кафедры «Аэрологии, охраны труда и окружающей среды».
2. Алексеев С.П.,Казаков А.М., Колотиков Н.П., Борьба с шумом и вибрацией в машиностроении.-М.: Машиностроение, 1970 - 207 с.
3.Соколов Э.М., Захаров Е.И., Панфёрова И.В., Макеев А.В. Безопасность жизнедеятельности: Учебное пособие для студентов университетов. – Тула, Гриф и К, 2001
3