Основы алгоритмизации (работа 1)
Западно-Казахский Аграрно-Технический университет Жангир-хана
Кафедра: «Информатики»
Реферат
На тему
Основы алгоритмизации
Подготовил: Иванов П.
Проверил: Кухта В.С.
Уральск 2010
План
1. Понятие алгоритма и его свойства
2. Способы описания алгоритмов
3. Основные структурные алгоритмические конструкции
4. Список литературы
Понятие алгоритма и его свойства
Алгоритм – описанная на некотором языке точная конечная система правил, определяющая содержание и порядок действий над некоторыми объектами, строгое выполнение которых дает решение поставленной задачи. Понятие алгоритма, являющееся фундаментальным в математике и информатике, возникло задолго до появления средств вычислительной техники. Слово «алгоритм» появилось в средние века, когда европейцы познакомились со способами выполнения арифметических действий в десятичной системе счисления; описанными узбекским математиком Муххамедом бен Аль-Хорезми («аль-Хорезми» — человек из города Хорезми; в настоящее время город Хива в Хорезмской области Узбекистана). Слово алгоритм – есть результат европейского произношения слов аль-Хорезми. Первоначально под алгоритмом понимали способ выполнения арифметических действий над десятичными числами. В дальнейшем это понятие стали использовать для обозначения любой последовательности действий, приводящей к решению поставленной задачи.
Любой алгоритм существует не сам по себе, а предназначен для определенного исполнителя (человека, робота, компьютера, языка программирования и т.д.). Свойством, характеризующим любого исполнителя, является то, что он умеет выполнять некоторые команды. Совокупность команд, которые данный исполнитель умеет выполнять, называется системой команд исполнителя. Алгоритм описывается в командах исполнителя, который будет его реализовывать. Объекты, над которыми исполнитель может совершать действия, образуют так называемую среду исполнителя. Исходные данные и результаты любого алгоритма всегда принадлежат среде того исполнителя, для которого предназначен алгоритм.
Значение слова «алгоритм» очень схоже со значениями слов «рецепт», «метод», «процесс». Однако, в отличие от рецепта или процесса, алгоритм характеризуется следующими свойствами: дискретностью, массовостью, определенностью, результативностью, формальностью.
Дискретность (разрывность – противоположно непрерывности) – это свойство алгоритма, характеризующее его структуру: каждый алгоритм состоит из отдельных законченных действий, говорят: «Делится на шаги».
Массовость – применимость алгоритма ко всем задачам рассматриваемого типа, при любых исходных данных. Например, алгоритм решения квадратного уравнения в области действительных чисел должен содержать все возможные исходы решения, т.е., рассмотрев значения дискриминанта, алгоритм находит либо два различных корня уравнения, либо два равных, либо делает вывод о том, что действительных корней нет.
Определенность (детерминированность, точность) — свойство алгоритма, указывающее на то, что каждый шаг алгоритма должен быть строго определен и не допускать различных толкований; также строго должен быть определен порядок выполнения отдельных шагов. Помните сказку про Ивана-царевича? «Шел Иван-царевич по дороге, дошел до развилки. Видит большой камень, на нем надпись: «Прямо пойдешь — голову потеряешь, направо пойдешь — жену найдешь, налево пойдешь – разбогатеешь». Стоит Иван и думает, что дальше делать». Таких инструкций алгоритм содержать не может.
Результативность – свойство, состоящее в том, что любой алгоритм должен завершаться за конечное (может быть очень большое) число шагов. Вопрос о рассмотрении бесконечных алгоритмов остается за рамками теории алгоритмов.
Формальность – это свойство указывает на то, что любой исполнитель, способный воспринимать и выполнять инструкции алгоритма, действует формально, т.е. отвлекается от содержания поставленной задачи и лишь строго выполняет инструкции. Рассуждать «что, как и почему?» должен разработчик алгоритма, а исполнитель формально (не думая) поочередно исполняет предложенные команды и получает необходимый результат.
Способы описания алгоритмов
Рассмотрим следующие способы описания алгоритма: словесное описание, псевдокод, блок-схема, программа.
Словесное описание представляет структуру алгоритма на естественном языке. Например, любой прибор бытовой техники (утюг, электропила, дрель и т.п.) имеет инструкцию по эксплуатации, т.е. словесное описания алгоритма, в соответствии которому данный прибор должен использоваться.
Никаких правил составления словесного описания не существует. Запись алгоритма осуществляется в произвольной форме на естественном, например, русском языке. Этот способ описания не имеет широкого распространения, так как строго не формализуем (под «формальным» понимается то, что описание абсолютно полное и учитывает все возможные ситуации, которые могут возникнуть в ходе решения); допускает неоднозначность толкования при описании некоторых действий; страдает многословностью.
Псевдокод — описание структуры алгоритма на естественном, частично формализованном языке, позволяющее выявить основные этапы решения задачи, перед точной его записью на языке программирования. В псевдокоде используются некоторые формальные конструкции и общепринятая математическая символика.
Строгих синтаксических правил для записи псевдокода не существует. Это облегчает запись алгоритма при проектировании и позволяет описать алгоритм, используя любой набор команд. Однако в псевдокоде обычно используются некоторые конструкции, присущие формальным языкам, что облегчает переход от псевдокода к записи алгоритма на языке программирования. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором используемых слов и конструкций.
Блок-схема – описание структуры алгоритма с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения отдельных инструкций. Этот способ имеет ряд преимуществ. Благодаря наглядности, он обеспечивает «читаемость» алгоритма и явно отображает порядок выполнения отдельных команд. В блок-схеме каждой формальной конструкции соответствует определенная геометрическая фигура пли связанная линиями совокупность фигур.
Рассмотрим некоторые основные конструкции, использующиеся для построения блок-схем алгоритмов программ, регламентированные ГОСТ 19.701-90.
Блок, характеризующий начало/конец алгоритма (для подпрограмм — вызов/возврат)
Блок — процесс, предназначенный для описания отдельных действий
Блок — Предопределенный процесс, предназначенный для обращения к вспомогательным алгоритмам (подпрограммам)
Блок — ввода/вывода с неопределенного носителя или описания исходных данных
Блок — решение (проверка условия или условный блок)
Блок — границы цикла, описывающий циклические процессы типа: «цикл с предусловием», «цикл с постусловием»
Соединительные блоки
Описания алгоритма в словесной форме, на псевдокоде или в виде блок-схемы допускают некоторый произвол при изображении команд. Вместе с тем она настолько достаточна, что позволяет человеку понять суть дела и исполнить алгоритм. На практике исполнителями алгоритмов выступают компьютеры. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на «понятном» ему языке, такой формализованный язык называют языком программирования.
Программа – описание структуры алгоритма на языке алгоритмического программирования.
Основные структурные алгоритмические конструкции
Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся, циклические с предусловием и циклические с постусловием. Любой алгоритм можно составить, используя эти четыре алгоритмические конструкции.
Линейной называют алгоритмическую конструкцию, реализованную в виде последовательности действий (шагов), в которой каждое действие (шаг) алгоритма выполняется ровно один раз, причем после каждого i-го действия (шага) выполняется (i+1)-е действие (шаг), если i-е действие — не конец алгоритма.
Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если – то) и полное (если – то – иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 1). Неполное ветвление предполагает наличие некоторых действий алгоритма только на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния.
Рис. 1. Полное ветвление
Циклической (или циклом) называют алгоритмическую конструкцию, в которой некая, идущая подряд группа действий (шагов) алгоритма можем выполняться несколько раз, в зависимости от входных данных или условия задачи. Группа повторяющихся действий на каждом шагу цикла называется телом цикла. Любая циклическая конструкция содержит в себе элементы ветвящейся алгоритмической конструкции.
Цикл с предусловием
В данной циклической структуре сначала проверяется значение условного выражения (условие) перед выполнением очередного шага цикла. Если значение условного выражения истинно, исполняется тело цикла. После чего управление вновь передается проверке условия и т.д. Эти действия повторяются до тех пор, пока условное выражение не примет значение ЛОЖЬ. При первом же несоблюдении условия цикл завершается. Количество шагов цикла заранее не определено и зависит от входных данных задачи. Особенностью цикла с предусловием является то, что если изначально условное выражение ложно, то тело цикла не выполнится ни разу.
-
а)
б)
Рис. 2. Блок-схема цикла с предусловием: два варианта изображения с помощью условного блока а) и с помощью блока границы цикла б)
Цикл с постусловием
Как и в цикле с предусловием, в циклической конструкции с постусловием заранее не определено число повторений тела цикла, оно зависит от входных данных задачи. В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет выполняться до тех пор, пока значение условного выражения ложно (условие "окончания" цикла). Как только оно становится истинным, выполнение команды прекращается. Возможно построение цикла и с условием "продолжения" цикла, т.е. тело цикла будет выполняться до тех пор, пока значение условия истинно. Блок-схема данной конструкции представлена на рис. 3 двумя способами: с помощью условного блока а и с помощью блока управления б.
Рис. 3. Блок-схема цикла с постусловием
Рассмотрим три типа циклических алгоритмов: цикл с параметром (который называют арифметическим циклом), цикл с предусловием и цикл с постусловием (их называют итерационными).
Существует разновидность цикла с предусловием, называемая арифметический цикл. В арифметическом цикле число его шагов (повторений) однозначно определяется правилом изменения параметра, которое задается с помощью начального (N) и конечного (К) значений параметра и шагом (h) его изменения. Т.е., на первом шаге цикла значение параметра равно N, на втором – N + h, на третьем – N + 2h и т.д. На последнем шаге цикла значение параметра не больше К, но такое, что дальнейшее его изменение приведет к значению, большему; чем К.
Например, вывести 10 раз слово «Привет!». Его блок-схема использует специальный блок начала арифметического цикла с указанием, что переменная i в нем будет изменяться от 1 до 10 с шагом 1.
Список литературы
«Основы компьютерной технологии», Шафрин Ю. Москва 2005 г.
«30 уроков по информатике», Балафанов Е.Н. Москва 2007 г.
«Компьютерная математика», Могилев А.В. Санкт-Петербург 2005 г.
«Практикум по информатике», Могилев А.В. Санкт-Петербург 2005 г.
«Информационные системы», Романов А.Н Москва 2001 г.
1