Математическая теория информации
МАТЕМАТИЧЕСКАЯ ТЕОРИЯ ИНФОРМАЦИИ
1. Количество информации, и ее мера
На вход системы передачи информации (СПИ) от источника информации подается совокупность сообщений, выбранных из ансамбля сообщений (рис. 1).
Помехи
x>1 >y>1>
x>2 >y>2>
…> >…
x>n> y>n>
Рис. 1. Система передачи информации
Ансамбль сообщений – множество возможных сообщений с их вероятностными характеристиками – {Х, р(х)}. При этом: Х={х>1>, х>2>,…, х>m>} – множество возможных сообщений источника; i = 1, 2,…, m, где m – объем алфавита; p(x>i>) – вероятности появления сообщений, причем p(x>i>) 0 и поскольку вероятности сообщений представляют собой полную группу событий, то их суммарная вероятность равна единице
.
Каждое сообщение несет в себе определенное количество информации. Определим количество информации, содержащееся в сообщении x>i>, выбранном из ансамбля сообщений источника {Х, р(х)}. Одним из параметров, характеризующих данное сообщение, является вероятность его появления – p(x>i>), поэтому естественно предположить, что количество информации I(x>i>) в сообщении x>i> является функцией p(x>i>). Вероятность появления двух независимых сообщений x>1>> >и x>2>> >равна произведению вероятностей p(x>1>,> >x>2>) = p(x>1>).p(x>2>), а содержащаяся в них информация должна обладать свойством аддитивности, т.е.:
I(x>1>, x>2>) = I(x>1>)+I(x>2>). (1)
Поэтому для оценки количества информации предложена логарифмическая мера:
. (2)
При этом наибольшее количество информации содержат наименее вероятные сообщения, а количество информации в сообщении о достоверном событии равно нулю. Т. к. все логарифмы пропорциональны, то выбор основания определяет единицу информации: log>a>x = log>b>x/log>b>a.
В зависимости от основания логарифма используют следующие единицы информации:
2 – [бит] (bynary digit – двоичная единица), используется при анализе ин-формационных процессов в ЭВМ и др. устройствах, функционирующих на основе двоичной системы счисления;
e – [нит] (natural digit – натуральная единица), используется в математических методах теории связи;
10 – [дит] (decimal digit – десятичная единица), используется при анализе процессов в приборах работающих с десятичной системой счисления.
Битом (двоичной единицей информации) – называется количество информации, которое снимает неопределенность в отношении наступления одного из двух равновероятных, независимых событий.
Среднее количество информации для всей совокупности сообщений можно получить путем усреднения по всем событиям:
. (3)
Количество информации, в сообщении, состоящем из n не равновероятных его элементов равно (эта мера предложена в 1948 г. К. Шенноном):
. (4)
Для случая независимых равновероятных событий количество информации определяется (эта мера предложена в 1928 г. Р. Хартли):
. (5)
2. Свойства количества информации
1. Количество информации в сообщении обратно – пропорционально вероятности появления данного сообщения.
2. Свойство аддитивности – суммарное количество информации двух источников равно сумме информации источников.
3. Для события с одним исходом количество информации равно нулю.
4. Количество информации в дискретном сообщении растет в зависимости от увеличения объема алфавита – m.
Пример 1. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны: p>i0 >= p>i1>> >= 1/2.
Количество информации равно:
I = n log m = 8 log>2> 2 = 8 бит.
Пример 2. Определить количество информации в сообщении из 8 двоичных символов (n = 8, m = 2), если вероятности равны:
p>i0 >= 3/4; p>i1>> >= 1/4.
Количество информации равно:
3. Энтропия информации
Энтропия – содержательность, мера неопределенности информации.
Энтропия – математическое ожидание H(x) случайной величины I(x) определенной на ансамбле {Х, р(х)}, т.е. она характеризует среднее значение количества информации, приходящееся на один символ.
. (6)
Определим максимальное значение энтропии H>max>(x).> >Воспользуемся методом неопределенного множителя Лагранжа - для отыскания условного экстремума функции [6]. Находим вспомогательную функцию:
(7)
Представим вспомогательную функцию F в виде:
. (8)
Найдем максимум этой функции
т. к.
.
Как видно из выражения, величина вероятности p>i> не зависит от i, а это может быть в случае, если все p>i>> >равны, т.е. p>1> =p>2> =…=p>m> =1/m.
При этом выражение для энтропии равновероятных, независимых элементов равно:
. (9)
Найдем энтропию системы двух альтернативных событий с вероятностями p>1 >и p>2>. Энтропия равна
4. Свойства энтропии сообщений
1. Энтропия есть величина вещественная, ограниченная, не отрицательная, непрерывная на интервале 0 p 1.
2. Энтропия максимальна для равновероятных событий.
3. Энтропия для детерминированных событий равна нулю.
4. Энтропия системы двух альтернативных событий изменяется от 0 до 1.
Энтропия численно совпадает со средним количеством информации но принципиально различны, так как:
H(x) – выражает среднюю неопределенность состояния источника и является его объективной характеристикой, она может быть вычислена априорно, т.е. до получения сообщения при наличии статистики сообщений.
I(x) – определяется апостериорно, т.е. после получения сообщения. С получением информации о состоянии системы энтропия снижается.
5. Избыточность сообщений
Одной из информационных характеристик источника дискретных сообщений является избыточность, которая определяет, какая доля максимально-возможной энтропии не используется источником
, (10)
где ? – коэффициент сжатия.
Избыточность приводит к увеличению времени передачи сообщений, уменьшению скорости передачи информации, излишней загрузки канала, вместе с тем, избыточность необходима для обеспечения достоверности передаваемых данных, т.е. надежности СПД, повышения помехоустойчивости. При этом, применяя специальные коды, использующие избыточность в передаваемых сообщениях, можно обнаружить и исправить ошибки.
Пример 1. Вычислить энтропию источника, выдающего два символа 0 и 1 с вероятностями p(0) = p(1) = 1/m и определить его избыточность.
Решение: Энтропия для случая независимых, равновероятных элементов равна: H(x) = log>2>m = log>2>2 = 1 [дв. ед/симв.]
При этом H(x) = H>max>(x) и избыточность равна R = 0.
Пример 2. Вычислить энтропию источника независимых сообщений, выдающего два символа 0 и 1 с вероятностями p(0) = 3/4, p(1) = 1/4.
Решение: Энтропия для случая независимых, не равновероятных элементов равна:
При этом избыточность равна R = 1–0,815=0,18
Пример 3. Определить количество информации и энтропию сообщения из пяти букв, если число букв в алфавите равно 32 и все сообщения равновероятные.
Решение: Общее число пятибуквенных сообщений равно: N = mn = 32
Энтропия для равновероятных сообщений равна:
H = I = – log>2 >1/N = log>2>325 = 5 log>2>32 = 25 бит./симв.
Литература
Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.
Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
Кловский Д.Д. Теория передачи сигналов. – М.: Связь, 1984.
Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320 с.
Цымбал В.П. Теория информации и кодирование. – М.: Высш. шк., 1986.
Асанов М.О., Баранский В.А., Расин В.В. Дискретная математика: графы матроиды, алгоритмы. – Ижевск: НИЦ «РХД», 2001, 288 стр.