Коды Боуза-Чоудхури-Хоквингема

РЕФЕРАТ

По курсу “Теория информации и кодирования”

на тему:

"КОДЫ БОУЗА-ЧОУДХУРИ-ХОКВИНГЕМА"

БЧХ коды

Коды Боуза-Чоудхури-Хоквингема (БЧХ) – класс циклических кодов, исправляющих кратные ошибки, т. е. две и более (d>0 > 5).

Теоретически коды БЧХ могут исправлять произвольное количество ошибок, но при этом существенно увеличивается длительность кодовой комбинации, что приводит к уменьшению скорости передачи данных и усложнению приемо-передающей аппаратуры (схем кодеров и декодеров).

Методика построения кодов БЧХ отличается от обычных циклических, в основном, выбором определяющего полинома P(х). Коды БЧХ строятся по заданной длине кодового слова n и числа исправляемых ошибок S , при этом количество информационных разрядов k не известно пока не выбран определяющий полином.

Рассмотрим процедуру кодирования с использованием кода БЧХ на конкретных примерах.

Пример Построить 15-разрядный код БЧХ, исправляющий две ошибки в кодовой комбинации (т. е. n = 15, S = 2).

Решение:

1. Определим количество контрольных m и информационных разрядов k

m h S .

Определим параметр h из формулы

n = 2h-1, h = log>2>(n+1) = log>2>16 = 4,

при этом: m h S = 42 = 8; k = n-m = 15-8 = 7.

Таким образом, получили (15, 7)-код.

2. Определим параметры образующего полинома:

- количество минимальных многочленов, входящих в образующий

L = S = 2;

- порядок старшего (все минимальные - нечетные) минимального многочлена = 2S-1 = 3;

- степень образующего многочлена = m 8.

3. Выбор образующего многочлена.

Из таблицы для минимальных многочленов для кодов БЧХ (см. приложение 4) из колонки 4 (т. к. l = h = 4) выбираем два минимальных многочлена 1 и 3 (т. к. = 3):

M>1>(x) = 10011;

M>2>(x) = 11111.

При этом

P(x) =M>1>(x)M>2>(x)=1001111111=111010001= x8+ x7+ x6+ x4+1.

4. Строим образующую матрицу. Записываем первую строку образующей матрицы, которая состоит из образующего полинома с предшествующими нулями, при этом общая длина кодовой комбинации равна n = 15. Остальные строки матрицы получаем в результате k-кратного циклического сдвига справа налево первой строки матрицы.

Строки образующей матрицы представляют собой 7 кодовых комбинаций кода БЧХ, а остальные могут быть получены путем суммирования по модулю 2 всевозможных сочетаний строк матрицы.

Процедура декодирования, обнаружения и исправления ошибок в принятой кодовой комбинации такая же, как и для циклических кодов с d>0 >< 5

Пример Построить 31-разрядный код БЧХ, исправляющий три ошибки в кодовой комбинации (т. е. n = 31, S = 3).

Решение:

1. Определим количество контрольных разрядов m и информационных разрядов k.

m h S.

Определим параметр h из формулы

n = 2h-1,h = log>2>(n+1) = log>2>32 = 5,

при этом: m h S = 53 = 15; k = n-m = 31-15 = 16.

Таким образом, получили (31, 16)-код.

2.Определим параметры образующего полинома:

- количество минимальных многочленов, входящих в образующий

L = S = 3;

    порядок старшего минимального многочлена

 = 3S-1 = 5;

    степень образующего многочлена

= m 15.

    Выбор образующего многочлена.

Из таблицы для минимальных многочленов для кодов БЧХ ( приложение 4) из колонки 5 (т. к. l = h = 5) выбираем три минимальных многочлена 1, 3 и 5 (т. к. = 5):

M>1>(x) =100101;

M>2>(x) =111101;

M>3>(x) =110111.

При этом

P(x) = M>1>(x) M>2>(x) M>3>(x) =1000111110101111=

= x15+ x11 +x10+ x9+ x8+ x7+ x5+ x3 + x2+x+ 1.

4. Строим образующую матрицу. Записываем первую строку образующей матрицы, которая состоит из образующего полинома с предшествующими нулями, при этом общая длина кодовой комбинации равна n = 31. Остальные строки матрицы получаем в результате k-кратного циклического сдвига справа налево первой строки матрицы.

000000000000000100011111011111

G(31,16)=000000000000001000111110111110

. . .

100011111011111000000000000000

Строки образующей матрицы представляют собой 16 кодовых комбинации кода БЧХ, а остальные могут быть получены путем суммирования по модулю 2 всевозможных сочетаний строк матрицы.

Декодирование кодов БЧХ

Коды БЧХ представляют собой циклические коды и, следовательно, к ним применимы любые методы декодирования циклических кодов. Открытие кодов БЧХ привело к необходимости поиска новых алгоритмов и методов реализации кодеров и декодеров. Получены существенно лучшие алгоритмы, специально разработанные для кодов БЧХ. Это алгоритмы Питерсона, Бэрлекэмпа и др.

Рассмотрим алгоритм ПГЦ (Питерсона-Горенстейна-Цирлера). Пусть БЧХ код над полем GF(q) длины n и с конструктивным расстоянием d задается порождающим полиномом g(x), который имеет среди своих корней элементы ,  — целое число (например 0 или 1). Тогда каждое кодовое слово обладает тем свойством, что . Принятое слово r(x) можно записать как r(x) = c(x) + e(x), где e(x) — полином ошибок. Пусть произошло ошибок на позициях (t максимальное число исправляемых ошибок), значит , а  — величины ошибок.

Можно составить j-ый синдром Sj принятого слова r(x):

.

Задача состоит в нахождений числа ошибок u, их позиций и их значений при известных синдромах Sj.

Предположим, для начала, что u в точности равно t. Запишем (1) в виде системы нелинейных уравнений в явном виде:

Обозначим через локатор k-ой ошибки, а через величину ошибки, . При этом все Xk различны, так как порядок элемента β равен n, и поэтому при известном Xk можно определить ik как ik = logβXk.

Составим полином локаторов ошибок:

Корнями этого полинома являются элементы, обратные локаторам ошибок. Помножим обе части этого полинома на . Полученное равенство будет справедливо для

:

Положим и подставим в (3). Получится равенство, справедливое для каждого и при всех :

Таким образом для каждого l можно записать свое равенство. Если их просуммировать по l, то получиться равенство, справедливое для каждого

:

.

Учитывая (2) и то, что

(то есть меняется в тех же пределах, что и ранее) получаем систему линейных уравнений:

.

Или в матричной форме

,

Где

Если число ошибок и в самом деле равно t, то система (4) разрешима, и можно найти значения коэффициентов . Если же число u < t, то определитель матрицы S(t) системы (4) будет равен 0. Это есть признак того, что количество ошибок меньше t. Поэтому необходимо составить систему (4), предполагая число ошибок равным t − 1. Высчитать определитель новой матрицы S(t − 1) и т. д., до тех пор, пока не установим истинное число ошибок.

После этого можно решить систему (4) и получить коэффициенты полинома локаторов ошибок. Его корни (элементы, обратные локаторам ошибок) можно найти простым перебором по всем элементам поля GF(qm). К ним найти элементы, обратные по умножению, — это локаторы ошибок . По локаторам можно найти позиции ошибок (ik = logβXk), а значения Yk ошибок из системы (2), приняв t = u. Декодирование завершено.

Коды Рида–Соломона

Широко используемым подмножеством кодов БЧХ являются коды Рида-Соломона, которые позволяют исправлять пакеты ошибок. Пакет ошибок длины b представляет собой последовательность из таких b ошибочных символов, что первый и последний из них отличны от нуля. Существуют классы кодов Рида-Соломона, позволяющие исправлять многократные пакеты ошибок.

Коды Рида-Соломона широко используются в устройствах цифровой записи звука, в том числе на компакт-диски. Данные, состоящие из отсчетов объединяются в кадр, представляющий кодовое слово. Кадры разбиваются на блоки по 8 бит. Часть блоков являются контрольными.

Обычно 1 кадр (кодовое слово) = 32 символа данных +24 сигнальных символа +8 контрольных бит = 256 бит.

Сигнальные символы это вспомогательные данные, облегчающие декодирование: служебные сигналы, сигналы синхронизации и т. д.

При передаче данных производится перемежение (изменение порядка следования по длине носителя и во времени) блоков с различным сдвигом во времени, в результате чего расчленяются сдвоенные ошибки, что облегчает их локализацию и коррекцию. При этом используются коды Рида-Соломона с минимальным кодовым расстоянием d>0 >= 5.

Сверточные коды

Кроме рассмотренных корректирующих кодов используются так называемые сверточные коды, контрольные биты, в которых формируются непрерывно из информационных и контрольных бит смежных блоков.

Выводы

Таким образом, в результате написания реферата, пришли к выводу, что коды Боуза-Чоудхури-Хоквингхема – это широкий класс циклических кодов, способных исправлять многократные ошибки.

БЧХ-коды играют заметную роль в теории и практике кодирования. Интерес к ним определяется следующим: коды БЧХ имеют весьма хорошие свойства; данные коды имеют относительно простые методы кодирования и декодирования; коды Рида-Соломона являются широко известным подклассом недвоичных БЧХ кодов, которые обладают оптимальными свойствами, и применяются для исправления многократных пакетов ошибок.

Список использованной литературы

    Блейхут Р. Теория и практика кодов, контролирующих ошибки = Theory and practice of error control codes. — М.: Мир, 1986. — С. 576

    Дмитриев В.И. Прикладная теория информации: Учебник для вузов. М.: Высшая школа , 1989. 320 c.

    Колесник В.Д., Полтырев Г.Ш. Курс теории информации. – М.: Наука, 1982.

    Кудряшов Б.Д. Теория информации. Учебник для вузов Изд-во ПИТЕР, 2008. – 320с.

    Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. — М.: Мир, 1976. — С. 596.

    Семенюк В. В. Экономное кодирование дискретной информации. – СПб.: СПб ГИТМО (ТУ), 2001

    У. Петерсон, Э. Уэлдон, Коды, исправляющие ошибки, Москва, “Мир”, 1976.

    Э. Берлекэмп, Алгебраическая теория кодирования, Москва, “Мир”, 1971.