Концепции современного естествознания (работа 19)

эта работа была сделана на заказ!

список оригинальных работ( больше 100) в режиме off-line вы можете посмотреть по адресу:

http://www.sinor.ru/~ranger/Ref

также вы найдете много учебной литературы и статей по всем предметам в моей библиотеке on-line

http://www.sinor.ru/~ranger

Государственный комитет по высшему образованию Российской Федерации

Новосибирская государственная академия экономики и управления

Кафедра концепций современного естествознания

контрольная работа

по курсу: Концепции Современного Естествознания

Вариант 5

Выполнил ст. 1-го курса

заочного факультета

спец. Бухучет и Аудит

Новосибирск 1999

    Использование законов сохранения импульса и момента импульса в современной цивилизации

Законы сохранения импульса и момента импульса выполняются при любом взаимодействии, об этом свидетельствуют многочислен­ные экспериментальные данные. Таким образом, эти законы спра­ведливы в мега-, макро- и микромире, и называются великими за­конами сохранения.

В мега мире закон сохранения момен­та импульса объясняет наблюдаемую форму галактик. Каждая галактика об­разовывалась из очень большой массы газа (порядка 1039—1040 кг), обладаю­щей первоначальным моментом им­пульса.

Широкое применение в современ­ной технике имеет гироскоп. Гироскоп — это осе симметричное тело, быстро вращающееся вокруг своей геометрической оси. Простейшим примером этого прибора слу­жит знакомая всем еще с детства игрушка — волчок. Ось вращения сохраняет свое направления в пространстве неизменным, если для удержания гироскопа использовать так называемый карданов подвес. Такие устройства нашли широкое применение в авиации и космо­навтике, в устройствах, обеспечивающих ориентацию судов вблизи магнитного поля Земли.

При выборе огнестрельного оружия предпочтение отдается нарез­ному по сравнению с гладкоствольным. Нарезное оружие, как изве­стно, стреляет на большие расстояния и с большей точностью. Про­ходя через ствол, пуля закручивается и приобретает момент импуль­са, направленный вдоль скорос­ти ее движения. Этот момент им­пульса придает пуле устойчивую ориентацию в пространстве, так, что различные турбулентности воздуха, возникающие в силу быстрого ее движения, не могут отклонить ее от цели.

Из опытных данных хорошо известно, что элементарные час­тицы обладают внутренним мо­ментом импульса.

Экспериментальные методы исследования элементарных частиц основаны на законе сохранения импульса. При столкновении элемен­тарные частицы оставляют видимые следы (треки) в специальных камерах, заполненных перенасыщенными парами воды или перегре­той жидкостью. При этом выводы о массе и свойствах эле­ментарных частиц делаются на основании закона сохранения импульса.

В игре "бильярд" сталкиваются шарики с равной массой. Как мож­но заметить из опыта или заключить из закона сохранения импуль­са, при столкновении двух шариков с равной массой, один из кото­рых покоился, движущийся шарик при столкновении передаст часть или весь свой импульс покоящемуся, а сам замедлит или остановит свое движение. При столкновении шариков с существенно разными массами направление и скорость движения изменит только легкий шарик. По этой причине во многих видах спорта участников сорев­нований делят на группы с примерно одинаковой массой участни­ков в каждой из них.

Любое движение материальных тел осуществляется в строгом со­ответствии с законом сохранения импульса. Поэтому освоение око­лоземного пространства и полеты в космос невозможны без приме­нения реактивной тяги. Закон сохранения импульса ставит непрос­тые вопросы перед "уфологами" периодически вступающими в "кон­такт" с "инопланетным разумом".

    поясните понятие инертной и гравитационной массы. Исходя из каких фактов делается утверждение об их эквивалентности? Чтобы изменилось в окружающем мире, если бы эти массы не были пропорциональны друг другу.

Галилей открыл явление падения всех тел на Земле с одинако­вым ускорением. Масса m связана с весом тела, но сам вес зависит от массы того тела, к которому притягивается масса m. Следовательно, вес не может служить коэффициентом пропорциональности между силой и ускорением, поэтому и вводят понятие инертной массы M, которая характеризует "нежелание" тела сдвинуться с места. Мас­са не зависит от направления движения (это многократно проверя­лось экспериментально) и с точностью до 10-9является скалярной (лат. scataris "ступенчатый") величиной.

Ньютон связал понятия массы и веса тела. Чтобы проверить выводы Галилея, Ньютон провел серию опытов с маятниками и убедился, что свинцовый и деревянный шары пада­ют с одинаковыми ускорениями, значит, Земля в этом случае оди­наково действует на оба шара. Такое влияние Земли на каждый шар (или каж­дое тело) можно выражать тяжестью, измеренной на весах путем сравнения с тяжестью тела, принятой за единицу. Развивая мысль Галилея, Ньютон вводит понятие силы F = MW как меру действия одного тела на другое, отождествляя вес с силой действия, оказыва­емого на него Землей.

У Ньютона масса — единственная причина гравитационноного вза­имодействия.

Массы входящие в уравнение закона всемирного тяготения, называют гравитационными. В отличие от инертных масс которые служат коэффициентом пропорциональности между силой, действующей на тело, и его ускорением, гравитационные массы определяют силу гравитационного взаимодействия между телами.Инертная масса была определена в динамическом опы­те: прикладывается известная сила, измеряется ускорение, и из фор­мулы F = MW выводится масса М. В законе гравитационного взаимо­действия иная масса, она может определяться из статического экспе­римента: измеряют силу взаимодействия между двумя телами, рас­положенными на определенном расстоянии.

Галилей пришел к выводу о пропорциональности гравитационной m и инертной М масс, сбрасывая тела с высоты. Попробуем просле­дить за его рассуждениями. Допустим, мы бросили вниз одновремен­но два тела, отличающиеся весом, — m>1>g и m>2>g. Согласно второму закону Ньютона, их ускорения соответственно будут определятся из соотношений: F>1> = M>1>W>1> и F>2> = M>2>W>2>. Сила, действующая на каждое тело, равна его весу: m>1>g = M>1>W>1> и m>2>g = M>2>W>2>. Ускорение каждого тела при падении равно: W>1> = (m>1>/M>1>)g и W>2> == (m>2>/M>2>)g. Эксперимент Галилея показал, что все тела при отсутствии сопротивления падают с одинаковым ускорением, т. е. отношение ускорений равно едини­це, или (W>1>/M>2>)= (m>1>/М>1>)(М>2>/m>2>) = 1. Это возможно только при про­порциональности инертной и гравитационной масс.

Последние эксперименты подтверждают равенство m = М с точ­ностью до 10-11. Опыты венгерского физика барона Лоранда фон Эт-веша показали универсальный характер пропорциональ­ности гравитационной и инертной масс, т. е. при соответствующем выборе единиц измерения коэффициент пропорциональности можно сделать равным единице. Универсальность означает пропорциональ­ность масс для всех веществ, поэтому они измеряются в граммах. Теория Ньютона не объясняет причину этой пропорциональности.

Наглядным подтверждением совпадения инертной и гравитационной масс служит тот факт, что все тела независимо от массы и состава падают на Землю с одним и тем же ускорением свободного падения. Состояние невесомости - это состояние свободного падения.

    Поясните принцип Ле Шателье. Найдите примеры применения этого принципа вне химии

Поскольку большинство химических реакций не идет до конца, то становится важным понятие равновесия между прямой и обрат­ной реакциями. В какой-то момент их скорости сравняются, и в дан­ной системе при данных условиях установится динамическое равновеcue. Вывести систему из равновесия можно только изменив условия согласно принципу, предложенному в 1884 г. Анри Луи Ле: "Если в системе, находящейся в равновесии, изменить один из факторов равновесия, например, увеличить давление, то произойдет реакция, сопровождающаяся уменьшением объема, и на­оборот. Если же такие реакции происходят без изменения объема, то изменение давления не будет влиять на равновесие".

Сейчас этот принцип формулируют так: внешнее воздействие, которое выводит систему из состояния термодинамического равновесия, вызывает в ней процессы, направленные на ослабление резуль­татов такого влияния или, еще современнее, что система выведенная внешним воздействием из состояния с минимальным производством энтропии, стимулирует развитие процессов, направленных на ослабление внешнего воздействия. Ле Шателье применял этот закон в промыш­ленных условиях для оптимизации синтеза аммиака, производства стекла и цемента, выплавки металлов, получения взрывчатых ве­ществ. Катализаторы, как оказалось, не влияют на положение рав­новесия: они одинаково влияют на прямую и обратную реакции, ускоряют достижение равновесия, но не сдвигают его.

Примером применения этого принципа вне химии может быть следующая ситуация:

Массовое размножение грызунов влечет за собой увеличение численности хищников и паразитов. Они сокращают численность популяции грызунов. Но вслед за этим сокращается численность хищников, так как они начинают погибать от голода. Т. е. Равновесие в экосистеме восстанавливается.

    Поясните понятие «фазы» и «фазового перехода». Какие фазовые переходы относят к фазовым переходам первого и второго родов, что лежит в основе такой классификации. Приведите примеры.

фазами называют различные однородные части физико-химичес­ких систем. Однородным является вещество, когда все параметры со­стояния вещества одинаковы во всех его элементарных объемах, раз­меры которых велики по сравнению с межатомными состояниями. Смеси различных газов всегда составляют одну фазу, если во всем объеме они находятся в одинаковых концентрациях. Одно и то же вещество в зависимости от внешних условий может быть в одном из трех агрегатных состояний — жидком, твердом или газообразном. В зависимости от внешних условий система может находиться в рав­новесии либо в одной фазе, либо сразу в нескольких фазах.

Во время фазового перехода температура не меняется, но меняет­ся объем системы. Фазовые переходы бывают нескольких родов. Существуют такие условия давления и температуры, при которых вещество находится в равновесии в разных фазах. Температуры, при которых происходят переходы из одной фазы в другую, называются температурами перехода. Они зависят от дав­ления, хотя и в различной степени: температура плавления — сла­бее, температуры парообразования и сублимации — сильнее.

Изменения агрегатных состояний вещества называются фазовыми переходами 1-го рода, если: 1) температура постоянна во время все­го перехода; 2) меняется объем системы; 3) меняется энтропия системы.

Чтобы произошел такой фазовый переход, нужно данной массе вещества сообщить определенное количество тепла, соответствующе­го скрытой теплоте превращения. В самом деле, при переходе из бо­лее конденсированной фазы в фазу с меньшей плотностью нужно сообщить некоторое количество энергии в форме теплоты, которое пойдет на разрушение кристаллической решетки (при плавлении) или на удаление молекул жидкости друг от. друга (при парообразова­нии). Во время преобразования скрытая теплота пойдет на преодоле­ние сил сцепления, интенсивность теплового движения не изменит­ся, в результате температура остается постоянной. При таком перехо­де степень беспорядка, следовательно, и энтропия, возрастает. Если процесс идет в обратном направления, то скрытая теплота выделяется.

Фазовые переходы 2-го, 3-го и т.д. родов связаны с порядком тех производных термодинамического потенциала дФ, которые ис­пытывают конечные изменения в точке перехода.

Такая классификация фазовых превращений связана с работами физика-теоретика Пауля Эренфеста. Так, в случае фа­зового перехода 2-го рода в точке перехода испытывают скачки про­изводные второго порядка: теплоемкость при постоянном давлении с = -Т(д2Ф/дТ2), сжимаемость =-(1/V>0>)( д2Ф/дp2), коэффициент теплового расширения = (1/V>0>)( д2Ф/дTp), тогда как первые произ­водные остаются непрерывными. Это означает отсутствие выделения (поглощения) тепла и изменения удельного объема (Ф — термоди­намический потенциал).

В 1937 г. Ландау показал, что фазовые переходы 2-го рода связаны с изменени­ем симметрии системы: выше точки перехода система, как правило, обладает бо­лее высокой симметрией. Например, в магнетике спиновые моменты выше точки ориентированы хаотически, и одновременное вращение всех спинов вокруг одной оси на одинаковый угол не изменяет свойств системы. Ниже точки перехода спи­ны имеют некоторую преимущественную ориентацию, и одновременный их пово­рот меняет направление магнитного момента системы. Ландау ввел коэффициент упорядочения и разложил термодинамический потенциал в точке перехода по сте­пеням этого коэффициента, на основе чего построил классификацию всех возмож­ных типов переходов, а также теорию явлений сверхтекучести и сверхпроводи­мости.

В окружающей нас природе мы особенно часто наблюдаем фазо­вые переходы воды. При переходе воды в пар происходит сначала испарение — переход поверхностного слоя жидкости в пар, при этом в пар переходят только самые быстрые молекулы: они должны пре­одолеть притяжение окружающих молекул, поэтому уменьшаются их средняя кинетическая энергия и, соответственно, температура жид­кости. Наблюдается в быту и обратный процесс — конденсация.

Оба эти процесса зависят от внешних условий. В некоторых случа­ях между ними устанавливается динамическое равновесие, когда чис­ло молекул, покидающих жидкость, становится равным числу моле­кул, возвращающихся в нее. Опыт показывает, что насыщенный пар, или пар, находящийся в динамическом равновесии со своей жидко­стью, не подчиняется закону Бойля — Мариотта, поскольку его дав­ление не зависит от объема. Процессы испарения и конденсации воды обуславливают сложные взаимодействия атмосферы и гидросферы, имеют важное значение в формировании погоды и климата. Между атмосферой и гидросферой происходит непрерывный обмен веще­ством (круговорот воды) и энергией.

Исследования показали, что с поверхности Мирового океана, со­ставляющего 94 % земной гидросферы, за сутки испаряется около 7 000 км3 воды и примерно столько же выпадает в виде осадков. Во­дяной пар, увлекаемый конвекционным движением воздуха, подни­мается вверх и попадает в холодные слои тропосферы. По мере подъе­ма пар становится все более насыщенным, затем конденсируется, об­разуя дождевые и облачные капли. В процессе конденсации пара в тропосфере за сутки выделяется около 1,6-1022 Дж теплоты, что в десятки тысяч раз превосходит вырабатываемую человечеством энер­гию за то же время.

Если процесс перехода жидкости в пар происходит во всем объе­ме, то его называют кипением. Разрыв пузырьков у поверхности ки­пящей жидкости свидетельствует, что давление пара в них превыша­ет давление над поверхностью жидкости.

Поздней осенью, когда после сырой погоды наступает резкое по­холодание, на ветвях деревьев и на проводах можно наблюдать иней — это десублимировавшие кристаллики льда. Подобное явление ис­пользуют при хранении мороженого, когда углекислота охлаждает­ся, так как переходящие в пар молекулы уносят энергию. На Марсе явления сублимации и десублимации углекислоты в его полярных шапках играют такую же роль, что и испарение — конденсация в атмосфере и гидросфере Земли.

    в чем уникальность строения атома углерода и почему он так распространен в соединениях. Почему нашу жизнь иногда называют углеродной.

С точки зрения химии жизнь — это всевозможные превращения разнообразных крупных и сложных молекул, главным элементом ко­торых является углерод. Он важен не с точки зрения распространенности на Земле, в земной коре углерода всего 0,055 %, в то время как кислорода 60,50 %, кремния 20,45 % и даже титана 0,27 %. В атмосфере двуокиси углерода 0,03 %, т. е. углерода всего 0,008 %. Все биологически функциональные вещества, кроме несколь­ких солей и воды, содержат углерод. Это белки, жиры, углеводы, гормоны, витамины. Число соединений углерода огромно. Они назы­ваются органическими соединениями, поскольку когда-то считалось, что такие молекулы могут образовываться только в живых организ­мах.

Органическая химия посвящена изучению углерода и его соеди­нений. Атомный номер углерода — 6, его ядро содержит шесть про­тонов и шесть нейтронов, вокруг ядра вращаются шесть электронов, масса атома С равна 12. При химических реакциях углерод способен присоединить 4 электрона и образовать устойчивую оболочку из восьми электронов, т. е. имеет валентность, равную четырем, и спо­собен к прочной ковалентной (присоединением электронов) связи. Например, эмпирическая формула одного из таких прочных соеди­нений — метана — СН>4>, а в структурном изображении — это тетра­эдр (четыре симметричные связи углерода).

Уникальным свойством углерода является его способность образо­вывать стабильные цепи и кольца, которые обеспечивают разнооб­разие органических соединений, причем эти связи могут быть крат­ными. При этом важно расположение атомов в пространстве, которое приводит к оптической активности вещества, к отличию в повороте плоскости поляризации проходящего света (рис. 1). Структурные формулы наглядно отражают связь формулы со свойствами вещества, с их помощью стало возможным объяснение изомерии и предсказа­ние свойств неизвестных еще соединений.


Рис. 1. Способы соединения атомов углерода друг с другом Черточки со свободными концами при каждом атоме углерода показывают, что он может образовывать связи с атомами других элементов (обычно это водород, кислород, азот, сера)

Зная валентность углерода, можно достаточно просто изобразить положение всех недостающих водородных атомов, что позволяет со­средоточить внимание на наиболее важных связях и химических груп­пах. Такие прочные ковалентные связи углерод может образовывать и с атомами других элементов (Н, О, Р, N, S), и с углеродными (С-С связь). Внутреннее отличие органики от большинства неорга­нических соединений выражается в том, что химические связи, как правило, в органических соединениях валентные, а ионные связи — очень редки. Поэтому углерод обладает этими уникальными свойствами, среди которых еще не отмечена способность соединений углерода к полимеризации и поликонденсации, а наша жизнь называется углеродной.

    Преобразования энергии и круговорот веществ в природе. Чем они отличаются и что между ними общего.

Биосфера представляет из себя единство живого и минеральных элементов, вовлеченных в сферу жизни. Она распределена по земной поверхности крайне неравномерно и в различных природных услови­ях принимает вид относительно независимых комплексов — биогеоценозов (или экосистем). Живая часть биогеоценоза — биоценоз - состоит из популяций организмов разных видов.

Одним из самых больших достижений науки в XX в. является выяснение механизмов превращения энергии в биологических системах Сейчас уже понятно, как солнечная энергия преобразуется в специальных пигментных структурах расте­ний в энергию химических связей, как превращаются вещества в процессах бро­жения и гликолиза (окисление углеводов без кислорода), как происходит внутри­клеточное дыхание — перенос электронов в митохондриях от коферментов к кис­лороду. В центре этих превращений в клетке находится АТФ, которая синтезирует­ся из АДФ и Н>3>РО>4> за счет световой энергии или энергии, выделяемой при гликолизе, брожении или дыхании. При гликолизе АТФ выделяется энергия, необходимая для совершения всей работы живого организма — от создания градиентов концен­трации ионов и сокращения мышц до синтеза белка.

Биосфера улавливает лишь небольшую часть солнечной энергии, поступающей на Землю. Ультрафиолетовая часть солнечного излучения, которая составляет 30 % всей солнечной энергии, доходящей до Земли, практически полностью задерживается атмосферой. Половина поступающей энергии превращается в тепло и затем излучается в космическое пространство, 20% расходуется на испарение воды и образование облаков и только около 0,02 % используется биосферой. Зеленые расте­ния усваивают эту энергию, поглощая молекул».) хлорофилла, и про­цессе фотосинтеза преобразуют ее и запасают и форме сахарен. От этого процесса зависит нее существование биосферы.

Животные, поедая растения, а хищники — травоядных животных, освобождают для себя эту энергию, сжигая сахара и другие пита­тельные вещества при помощи кислорода. Переработка пищи в орга­низмах сопровождается выделением энергии, при этом часть ее запа­сается в форме химической энергии и используется для совершения работы. В отличие от простейших существ, у которых сжигание веществ может происходить в любой части организма, высшие животные обладают специальной системой, распределяющей по орга­низму кислород и энергоносители. В легких кровь поглощает кисло­род и выделяет углекислый газ, в кишечнике она получает пита­тельные вещества. Процессы переваривания пищи обеспечивают раз­ложение сложных компонентов пищи на более простые, которые усваиваются кишечником и поступают в кровь, при этом высво­бождается энергия. Конечные продукты обмена веществ (избыток солей, воды, чужеродные и токсичные соединения) поступают через почки в мочу и выводятся из организма.

Животные не получают необходимую им энергию непосредствен­но от Солнца. Для добывания пищи им нужна сенсорная система ее обнаружения (глаза, уши, нос или сонар — ультразвуковой лока­тор, иные органы) и мускульная система, приводящая в движение их органы (руки, ноги, плавники, крылья и т.д.). Кроме того, у растений и животных имеются регулирующие системы — железы, выделяющие гормоны, и нервная система. В организме постоянно со­вершается работа: перекачивается кровь, поглощаются питательные вещества, происходят процессы возбуждения молекул, в которых запасается энергия, выводятся отходы жизнедеятельности и вредные вещества и т. д. Для создания упорядоченных систем (высокого уров­ня генетической или нервной организации) тоже необходима энер­гия. Эффективное функционирование всех систем обеспечивается также информацией о внешнем и внутреннем окружении. Работа со­стоит в выработке сигналов, которые регулируют энергетические процессы, организуют биоструктуры, контролируют расход энергии на разные раздражители и т. п.

Удовлетворение энергетических потребностей организмов проис­ходит в рамках равновесия, которое устанавливается между различ­ными организмами данной среды обитания (экосистемы). Среди оби­тателей обычно выделяют два типа организмов: одни способны не­посредственно использовать солнечную энергию и перерабатывать

в пищу вещества из неживой окружающей среды (автотрофы), дру­гие зависят от остальных производителей энергии, т. е. сами не про­изводят необходимую им пищу {гетеротрофы). Все элементы, из ко­торых построены организмы, многократно используются в биосфе­ре, тем более, что масса всего живого, когда-либо заселявшего Зем­лю, много больше массы самой Земли. Обмен энергии в биосфере отличается от круговорота веществ в ней. Частично энергия рассеива­ется при переходе от продуцентов (зеленых растений) к травоядным, а затем и к плотоядным животным (редуцентам), поэтому необходи­ма постоянная подпитка биосферы солнечной энергией.

Основу биосферы составляет биотический круговорот органичес­ких веществ при участии всех населяющих ее организмов. В законо­мерностях этого круговорота решена проблема развития и длитель­ного существования жизни. Мы не говорим "бесконечного", потому что все на земле имеет конец: сама Земля представляет собой огра­ниченное тело, конечен запас минеральных элементов и т. д. "Един­ственный способ придать ограниченному количеству свойство беско­нечного, — писал академик В. Р. Вильяме, — это заставить его вращаться по замкнутой кривой. Зеленые растения создают органическое вещество, незеленые разрушают его. Из минеральных соединений, полученных из распада органического вещества, новые зеленые растения строят новое органическое вещество и так без конца".

Жизнь на Земле идет именно таким путем. Каждый вид — это только звено в биотическом круговороте. Непрерывность жизни обес­печивается процессами синтеза и распада, каждый организм отдает или выделяет то, что используют другие организмы. Особенно вели­ка в этом круговороте роль микроорганизмов, которые превращают остатки животных и растений в минеральные соли и простейшие органические соединения, вновь используемые зелеными растения­ми для синтеза новых органических веществ. При разрушении слож­ных органических соединений высвобождается энергия, теряется ин­формация, свойственная сложно организованным существам. Любая форма жизни участвует в биотическом круговороте, и на нем основана саморегуляция биосферы. Микроорганизмы при этом играют двоякую роль: они быстро приспосабливаются к разным условиям жизни и могут использовать различные субстраты в качестве источ­ника углерода и энергии. Высшие организмы не обладают такими способностями и потому располагаются выше одноклеточных в эко­логической пирамиде, опираясь на них, как на фундамент.

Биотический круговорот состоит из разных круговоротов, причем каждый биоценоз представляет модель биосферы в миниатюре. Важ­ны и исторические факторы формирования биоценоза, и климат, и ландшафт, и многое другое. Напри­мер, экосистема леса включает биоценозы различных типов лесов — хвойные, лиственные, тропические, каждый из которых характери­зуется своим круговоротом веществ. В этом мне кажется проявляется отличие биотического круговорота от круговорота энергии, второе отличие: по закону сохранения энергии энергия не возникает ниоткуда и не уходит в никуда, т.е. преобразование энергии вечно (именно в данном круговороте энергии), а круговорот веществ в природе имеет свое окончание, как уже было сказано выше.

    Какие виды взаимодействий Вы знаете и какие из них играют важную роль в повседневной жизни и почему.

В настоящее время известны четыре типа взаимодействий: гра­витационные, слабые, электромагнитные и сильные. Физике XVII—XVIII вв. были известны только гравитационные взаимодей­ствия. Было найдено, что гравитационные силы прямо пропорцио­нальны произведению масс и обратно пропорциональны квадрату расстояния между массами. Мы постоянно ощущаем гравитацию в на­шей жизни. Гравитация (лат gravifas "тяжесть"), или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. По закону всемирного тяготения (открытого Ньютоном), описываю­щему это взаимодействие в хорошем приближении, две точечные массы притягивают друг друга с силой, направленной вдоль соеди­няющей их прямой: F>гр>= - Gm>1>*m>2>/r2

Знак минус указывает, что мы имеем дело с притяжением, r — расстояние между телами (считается, что размер тел много меньше г), m>1> и m>2> — массы тел. Величина G — универсальная постоянная, определяющая величину гравитационных сил. Если тела массами в 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67-1011 Н. Если бы величина G была больше, то увеличилась бы и сила. Утверждение об универсальности постоян­ной G означает, что в любом месте Вселенной и в любой момент времени сила притяжения между массами в 1 кг, разделенными рас­стоянием в 1 м, будет иметь то же значение. Поэтому можно гово­рить об универсальности постоянной G и о том, что она определяет структуру гравитирующих систем.

Обратимся теперь к электромагнитному взаимодействию. И элек­трические, и магнитные силы обусловлены электрическими заряда­ми. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда e1 и е2, непод­вижны и сосредоточены в точках на расстоянии г, то взаимодействие между ними чисто электрическое и определяется простой зависимос­тью (закон Кулона):

Здесь сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или оттал­кивания в зависимости от знаков зарядов е>1> и е>2 >Через  обозначе­на универсальная постоянная, определяющая интенсивность элект­ростатического взаимодействия, ее значение 8,85 • 1012 Ф/м. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них — протона и электрона — одинакова: это универсальная постоянная, равная 1,6 *10 -19 Кл. Заряд протона считается положительным (обозначает­ся е), электрона — отрицательным.

Магнитные силы полностью порождаются электрическими тока­ми — движением электрических зарядов. Существуют попытки объе­динения теорий с учетом симметрий, в которых предсказывается су­ществование магнитных зарядов, но они пока не обнаружены. По­этому величина е определяет и интенсивность магнитного взаимо­действия.

Если электрические заряды движутся с ускорением, то они отда­ют энергию в виде света, радиоволн или рентгеновских лучей. Види­мый свет является электромагнитным излучением определенного ди­апазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. 'Электромагнитные взаимо­действия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т.е. за химические и биологические явления. Гравитация и электромагнетизм — дальнодействующие силы, распространяющиеся на всю Вселенную.

Сильные и слабые ядерные взаимодействия — короткодействую­щие и проявляются только в пределах размеров атомного ядра.

Слабое взаимодействие ответственно за многие ядерные процес­сы, например, такие, как превращение нейтронов в протоны, и сильнее других сказывается на превращениях частиц. Поэтому эф­фективность слабого взаимодействия можно охарактеризовать уни­версальной постоянной связи g(W), определяющей скорость протека­нии процессов типа распада нейтрона. Через ядерное слабое взаимо­действие одни субатомные частицы могут превращаться в другие.

Сильное ядерное взаимодействие имеет более сложную природу. Именно оно препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. С этим типом взаимодействия связаны энергия, выделяемая Солн­цем и звездами, превращения в ядерных реакторах и освобождение энергии. В ряде простейших случаев для его характеристики можно ввести величину g(S), аналогичную электрическому заряду, но мно­го большую. Здесь есть некоторые особенности — сильное взаимо­действие не удовлетворяет закону обратной пропорциональности, как гравитационное или электромагнитное: оно очень резко спадает за пределами эффективной области радиусом около 10-15м. Кроме того, внутри протонов и нейтронов также существует сильное взаимодей­ствие между теми элементарными частицами, из которых они состо­ят, следовательно, взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий. Но пока картина этих глубин­ных явлений скрыта от нас.

Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени неясно, исчерпываются ли ими все взаимодействия в природе. Самым сильным является короткодейству­ющее сильное взаимодействие, электромагнитное слабее его на два порядка, слабое — на 14 порядков, а гравитационнное — самое сла­бое, оно меньше сильного на 39 порядков. В соответствии с величи­ной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия происходят при столкновении частиц с око­лосветовыми скоростями, и время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10-23 с. В случае слабого взаимодействия процессы происходят медлен­ней — за 10-9 с. Характерные времена для гравитационного взаимо­действия порядка 1016 с, или 300 млн лет.

Среди электромагнитных взаимодействий для примера можно выделить химическую реакцию, в медицине - рентгеновское обследование. Что касается любви – то это соединение всех четырех взаимодействий в одно.

    В чем суть соотношения неопределенностей Гейзенберга? Как Вы понимаете слова Ричарда Феймана: «Микрочастицы не похожи ни на что, из того, что Вам хоть когда-нибудь приходилось видеть».

Гейзенберг представил физические величины как совокупность всех возможных амплитуд перехода из одного квантового состояния в другие. Сама вероятность перехода пропорциональна квадрату мо­дуля амплитуды, именно эти амплитуды и наблюдаются в экспери­ментах. Тогда каждая величина должна иметь два индекса, соответ­ствующих верхнему и нижнему состояниям. Эти величины называ­ются матрицами. Гейзенберг получил и уравнения для наблюдаемых величин, но в первоначальном виде они были сложными. В 1926 г. он сумел объяснить отличие двух систем термов для пара- и ортогелия как соответствующих симметричным и антисимметричным решениям его уравнения.

Гейзенберг в решении проблем, которыми начал заниматься с 1925 г., шел от наглядных феноменологических моделей. В 1927 г. он при поддержке Бора и его школы предложил устранить противоре­чие волна — частица, которое он понимал как некую аналогию. Счи­тая, что "совокупность атомных явлений невозможно непосредствен­но выразить нашим языком", он предложил отказаться от представ­ления о материальной точке, точно локализованной во времени и пространстве. Либо точное положение в пространстве при полной не­определенности во времени, либо наоборот — таково требование квантовых скачков.

Так Гейзенберг пришел к формулировке принципа неопределенно­сти, устанавливающего границы применимости классической физи­ки. Этот принцип, принесший ему большую известность и до сих пор вызывающий дискуссии, представляет фундаментальное положение квантовой теории, отражая ограничение информации о микробъектах самими средствами наблюдения. Гейзенберг подсчитал Предельную точность определения положения и скорости электрона из так называемых перестановочных соотношений квантовой меха­ники. В то время в моде были мысленные эксперименты. Допустим, в какой-то момент нам нужно угнать положение и скорость электрона. Самый точный метод — осветить электрон пучком фотонов. Электрон столкнется с фотоном, и его положение будет определено с точ­ностью до длины волны используемого фотона. Для максимальной точности нужно использовать фотоны наимень­шей длины, т. е. большей частоты, или обладающие большими энер­гией Е и импульсом hv/c. Но чем больше импульс фотона, тем силь­нее он исказит импульс электрона. Чтобы знать точно положение электрона, нужно использовать фотоны бесконечной частоты, но тогда и импульс его будет бесконечным, так что количество движе­ния электрона будет совершенно неопределенным. И, наоборот, же­лая определить точно импульс электрона, из аналогичных рассужде­ний придем к неопределенности и положении. Выразив неопределен­ность положения как q, а неопределенность импульса как р, полу­чим q рh. Если взять сопряженные им величины — энергию Е и время t, то квантово-механическое соотношение неопределенности для них будет t Еh.

Высказывание Ричарда Феймана лишь доказывает что, сложно представить частицу, которая бы обладала свойствами и волны, и частицы.

    как происходит образование элементов во Вселенной по модели Большого взрыва. Поясните распространенность химических элементов в солнечной системе.

Светимость нашей Галактики оценивают числом 1054 эрг/с. Если возраст Галактики 1010 лет, то при постоянной светимости она выделила за -это время 2*1061 эрг. При образовании одного ядра гелия выделяется энергия 2,5* 10-5 эрг. Следовательно, за время существования Галактики в ней образовалось 1066 альфа-частиц. При массе частицы 6,67*10-24 г это составляет 7*1042 г, а масса Галактики — 4*1044 г. Поэтому к нашему времени отношение гелия к водороду Не/Н могло бы быть 7/400, или 1/57, по массе или 1/230 по числу атомов. Это меньше наблюдаемого соотношения в 20 раз, так как из анализа состава звездных атмосфер, космических лучей получается Не/Н порядка 1/11. Уже из таких простых оценок понятно, как получать согласие модели с данными соотношениями.

Плотность материи во Вселенной  практически совпадает с плот­ностью реликтового излучения. Она может быть выражена через энергию  = Е/с2, а, значит, и температуру Е = Т4. С другой сторо­ны,  = M/(4/3)R, R = (9GMt2/2)1/3 и  (5*105/t2) г/см3. Здесь время t в секундах. Отсюда ясна связь температуры Т и времени, прошедше­го от начала расширения: Т 1010/t

Сначала (при t<0,01 с) температура очень высока, и вещество со­стоит из нейтронов и протонов в равных пропорциях. Благодаря при­сутствию электронов, позитронов, нейтрино и антинейтрино проис­ходит непрерывное превращение n + е+ р + - и обратно, р + е- n+ . При охлаждении за первые 10 с число протонов увеличится за счет нейтронов, и начнется образование дейтерия, трития, изотопа гелия He-3 и Не-4. Через 100 с от начала расширения заканчиваются все ядерные превращения: водорода получается 0,9, гелия — 0,09, остальное приходится на более тяжелые элементы. По весу водород составляет около 0,7, гелий — 0,3. Это и есть химический состав Все­ленной к началу формирования звезд и галактик.

Для наглядности эту начальную стадию делят на четыре "эры". Для каждой из них можно выделить преобладающую форму суще­ствования материи, в соответствии с чем и даны названия.

В самом начале эры адронов, продолжавшейся 0,0001 с, была вели­ка энергия гамма-квантов. При высоких температурах могли суще­ствовать частицы только больших масс, для которых существенно и гравитационное взаимодействие. Элементарные частицы разделяют на адроны и лептоны, причем первые могут участвовать в сильных и быстрых взаимодействиях, а вторые — в более слабых и медленных, поэтому первые эры получили такие названия.

Адронная эра — эра тяжелых частиц и мезонов. Плотность d > 1014, Т > 1012 К, t< 0,0001 с. Основную роль играет излучение, количества вещества и антивещества могут быть примерно равными. В конце адронной эры происходит аннигиляция частиц и античастиц, но оста­ется некоторое количество протонов. Из равновесия с излучением

вышли последовательно гипероны, нуклоны, К- и -мезоны и их античастицы. Продолжительность эры лептонов 0,0001 <t< 10с, при этом 1010 К < Т 1012 К 104 < d < 1014 Основную роль, играют легкие части­цы, принимающие участие в реакциях между протонами и нейтро­нами. Постепенно из равновесия с излучением вышли мю-мезоны и их античастицы, электронные и мезонные нейтрино, а избыточные мюоны распались на электроны, электронное антинейтрино и мю-онное нейтрино. В конце эры лептонов происходит аннигиляция элек­тронов и позитронов. Спустя 0,2 с Вселенная становится прозрачной для электронных нейтрино, и они перестают взаимодействовать с ве­ществом. Согласно теории, эти реликтовые нейтрино сохранились до нашего времени, но температура их должна была снизиться до 2 К, поэтому пока их не могут обнаружить.

Далее приходит фотонная эра продолжительностью 1 млн лет. Ос­новная доля массы—энергии Вселенной приходится на фотоны, ко­торые еще взаимодействуют с веществом. В первые 5 мин эры про­исходили события, во многом определившие устройство нашего мира. В конце лептонной эры происходили взаимные превращения прото­нов и нейтронов друг в друга. К началу эры фотонов количества их были примерно равными. При уменьшении температуры протонов стало больше, поскольку реакции с образованием протонов оказы­вались энергетически более выгодными и, значит, более вероятны­ми. Это определило скорости реакций, и к началу эры число нейтро­нов остановилось на 15%.

В начале эры излучения 3000 К < T< 1010 К; 10-21 < d < 104г/см3 ней­троны захватываются протонами, и происходит образование ядер ге­лия. Кроме того, за эти первые минуты некоторое количество нейт­ронов пошло на образование ядер бериллия и лития, а некоторое количество распалось. В результате доля гелия в веществе могла со­ставить 1/3. В конце эры температура снизилась до 3 000 К, плотность уменьшилась на 5-6 порядков, в результате чего создались условия для образования первичных атомов. Излучение отделилось от веще­ства, Вселенная стала прозрачной для вещества, и пришла новая эра — эра вещества. Излучение играет главную роль, образуется гелий. В конце эры главную роль в образовании вещества Вселенной начина­ет трать вещество.

В звездную эру, наступившую при t порядка 1 млн. лет, Т прибли­зительно равно 3 000 К, а плотность d порядка 10-21г/см3 Начинается сложный процесс образования протозвезд и протогалактик.

Основными источниками сведений о распространенности химических элементов служат данные о составе Солнца полученные с помощью спектрального анализа, и результаты лабораторных химических анализов материала земной коры. метеоритов пород поверхности Луны и планет.. Принято выражать количество атомов какого-либо химического элемента по отношению к кремнию в разных природных системах. поскольку кремний принадлежит к обильным и труднолетучим элeментам.

С ростом порядкового номера распространенность элементов убывает неравномерно, причем элементы с четным порядковым номе' ром более распространены, чем с нечетным, особенно элементы с массовым числом, кратным 4, например. Не, С, О, Ne, Мд, Si, S, Ar, Са. ряд максимумов соответствует элементам с ядрами, у которых число протонов или нейтронов равно 2. 8. 20, 50, 82, 126 . Этим "магическим" числам соответствуют заполненные ядерные оболочки, характеризующие устойчивые ядра. По этому поводу американс­кие космохимики Гарольд Юри и Г.Зюсс сказали так: "Представляется, что распространенность элементов и их изотопов определяется ядерными свойствами и что окружающее нас вещество похоже на юлу космическою ядерною пожара, в котором оно было создано".

Большинство газов (или летучей части солнечного вещества) — Н, Не, СО, О, N, СО2 и все инертные газы. Основную часть внутрен­них планет и метеоритов составляют нелетучие элементы солнечного вещества — Si, Ре, Vg, Са, Al, Mi, Na. Проводя детальные сравнения, Виноградов показал, что эти породообразующие элементы планет и метеоритов непосредственно выброшены Солнцем, и не за­хвачены из других областей Галактики. Некоторые различия в составе планет связаны с вторичными процессами и тем, что элементы входят в разные соединения, пребывая в разных агрегатных состоя­ниях. Особенно близок состав нелетучей части элементов Солнца и наиболее распространенных каменных метеоритов — хондритов.

Летучая часть солнечного вещества, существующая в виде газов при Т>0, при низких температурах переходит в твердое состояние, а атомы газов вступают в соединения. Инертные газы в соединения не вступают, оставаясь и при низких температурах в газообразном со­стоянии. Земля и метеориты сохранили летучие элементы в той сте­пени, и какой они проявляли свою активность, поэтому инертные газы как на Земле, так и в метеоритах встречаются редко. Что каса­ется изотопного состава С, О, Si, Cl, Fe, Ni, Со, Ва, К, Си, то он оди­наков на Земле и в метеоритах. Относительно Солнца таких широких исследований не проведено, но для С12:С13 он такой же, как и на Земле. Исследования по инертным газам показали идентичность изо­топного состава в солнечной системе, но на других звездах это отно­шение иное.

Таким образом, все тела солнечной системы построены из неболь­шого числа элементов (около 28 номера таблицы Менделеева распро­страненность существенно падает) и имеют единое происхождение. Метеориты, большинство которых оказались очень древними, дали ценную научную информацию об истории возникновения отдельных тел солнечной системы. По оценкам, основанным на радиоактив­ном распаде урана, тория, рубидия и калия, их возраст около 4,5—4,6 млрд лет, т. е. совпадает с возрастом Земли и Луны. В них насчитываются примерно 66 минералов, большинство из них похожи на земные. Вероятно, метеориты образовались тогда же, что и плане­ты земной группы. Согласно принятой в геологии классификации, все элементы разделены на четыре группы. Атмофильные элементы склонны накапливаться в атмосферах; литофильные образуют твер­дые оболочки планет; халькофильные создают соединения с серой, подобные меди; сидерофильные способны растворяться в сплавах же­леза.

    Круговороты каких веществ определяют основные факторы формирования климата и каким образом.

Планеты земной группы, как предполагают ученые, когда-то были похожи друг на друга.

Разница в климате возникла из-зи разного круговорота углекислого газа при обмене им между корой и атмосферой. Как и водяной пар, углекислый газ является газом парниковым, так как он, пропуская солнечный свет, поглощает тепло планеты и переизлучает часть его к поверхности.

Оценки сделанные М. Хартром, показали снижение содержания углекислого газа в атмосфере со скоростью, точно компенсирующей возрастание светимости Солнца. Он провел аналогичные рассчеты для иных, чем у Земли, расстояний от Солнца и получил, что при расстоянии от Солнца меньше 1 а. Е. На 5% атмосфера бы нагрелась настолько, что океаны испарились бы в результате разгоняющегося парникового эффекта, а на расстоянии дальше на 1% а. Е. От Солнца имело бы разгоняющееся оледенение. Только в узкой полоске расстояний между 0,95 и 1,01 а.е. Земля смогла бы избежать этой катастрофы климата.

Нелепо предполагать, что это редкая случайность – появление жизни на нашей планете в таком узком кольце Солнечной системы. Скорее всего, содержание углекислого газа менялось в соответствии с изменением температуры поверхности Земли. Этот режим саморегуляции обеспечил нашей планете устойчивость климата.

Эта обратная связь могла обеспечиваться карбонатно-силикатным геохимическим циклом, который способен отвечать за 80% обмена углекислым газом между планетой и ее атмосферой на временных интервалах более 0,5 млн. лет.
Началом цикла можно считать растворение содержащегося в атмосфере углекислого газа в водяных капельках и образование угольной кислоты. Дождевые осадки разрушали горные породы, состоявшие из соединений кальция, кремния и кислорода. Угольная кислота вступает в реакцию с породами на поверхности, высвобождая ионы кальция и бикарбоната, которые поступают в грунтовые воды, а за­тем в океан, где оседают в скелетах и раковинах планктона и других организмах, состоящих из карбоната кальция (СаСО>3>). Останки этих организмов откладываются на океанском дне, формируя осадочные породы. Дно моря расширяется, через много тысяч лет эти породы приблизятся к краям континентов. Дно подтягивает их под берег, они попадают в земные, недра, где на них действуют давление и температура. Карбонат кальция соединяется с кремнием, образуя силикатные породы и выделяя углекислый газ, т. е. происходит карбонатный метаболизм. Газ попадает вновь в атмосферу через извержения вулканов и срединно-океанические хребты. Цикл завер­шается (рис. 129).

Изменения температуры земной поверхности влияют на количе­ство углекислого газа в атмосфере и величину парникового эффекта. Пусть по какой-то причине на Земле стало прохладнее. При более низкой температуре меньше воды испарится из океана в атмосферу, меньше выпадет дождей, и уменьшится эрозия почвы, вызванная осадками. Тогда скорость покидания атмосферы углекислым газом уменьшится, а скорость регенерации его в процессе карбонатного ме­таболизма и поступления в атмосферу останется на прежнем уровне. Это приведет к накоплению СО>2>, усилению парникового эффекта и восстановлению более теплого климата. Если по какой-то причине на Земле произошло потепление, то обратная связь сработает в другую сторону, и равновесие установится. Предположим, что все океаны вымерзли, дожди прекратились,

содержание СО, в атмосфере возросло. При современной скорости выделения давление его в 1 бар создается за 20 млн. лет, такого коли­чества углекислого газа хватит на поднятие средней температуры до +50 °С. Значит, льды растают и восстановится нормальный для жиз­ни климат.

В круговороте углекислого газа большую роль играют живые орга­низмы, определяющие изменения климата. Часть углекислого газа (около 20 %), не участвующая в карбонатно-силикатном обмене, вы­водится из атмосферы фотосинтезирующими растениями. При гние­нии растений и окислении в почве накапливается СО>2>, в результате его оказывается в почве больше, чем было 400 млн. лет назад до появления растений, поэтому превращение силикатных материалов в осадочные карбонатные породы происходит быстрее. Расчеты пока­зывают, что исчезновение растений привело бы в повышению тем­пературы на 10° за счет отрицательной обратной связи силикатно-карбонатного цикла.