Проектирование приточной и вытяжной механической вентиляции

Практическое задание №1

Проектирование приточной и вытяжной механической вентиляции

Вариант № 16

Задание: Рассчитать механическую вытяжную вентиляцию для помещения, в котором выделяется пыль или газ и наблюдается избыточное явное тепло.

Исходные данные: Количество выделяющихся вредностей: m>вр>>.>= 1,2 кг/час пыли, Qя>изб>>.>= 26 кВт. Параметры помещения: 9266 м. Температура воздуха: t>п>>.>= 21 С, t>у.>= 24 С. Допустимая концентрация пыли С>д>>.>=50 мг/м2. Число работающих: 80 человека в смену. Схема размещения воздуховода приведена на рис.3.1. Подобрать необходимый вентилятор, тип и мощность электродвигателя и указать основные конструктивные решения.


Р

l>=6м

ис 3.1. Схема воздуховодов

вытяжной вентиляции.

ПУ


l>4>=4м


l>1>=7м

l>3>=7м


l>=2м


l>=8м

l>=3,5м



l>a>=7м


l>2>=7м


Расчет:

L>П> – потребное количество воздуха для помещения, м3/ч;

L>СГ>> > - потребное количество воздуха исходя из обеспечения в данном помещение санитарно-гигиенических норм, м3/ч;

L>П> – тоже исходя из норм взрывопожарной безопасности, м3/ч.

Расчет значения L>СГ> ведут по избыткам явной или полной теплоте, массе выделяющихся вредных веществ, избыткам влаги (водяного пара), нормируемой кратности воздухообмена и нормируемому удельному расходу приточного воздуха. При этом значения L>СГ> определяют отдельно для теплого и холодного периода года при плотности приточного и удаляемого воздуха = 1,2 кг/м3 (температура 20 С).

При наличии в помещении явной теплоты в помещении потребный расход определяют по формуле:

где t>y> и t>п> – температуры удалённого и поступающего в помещение воздуха

При наличии выделяющихся вредных веществ (пар, газ, пыль т>вр> мг/ч) в помещении потребный расход определяют по формуле:

где С>д>концентрация конкретного вредного вещества, удаляемого из помещения, мг/м3

С>п> –концентрация вредного вещества в приточном воздухе, мг/м3

в рабочей зоне

Расход воздуха для обеспечения норм взрывопожарной безопасности ведут по массе выделяющихся вредных веществ в данном помещении, способных к взрыву

где С>нк>> >= 60 г/м3 – нижний концентрационный предел распространения пламени по пылевоздушным смесям.

Найденное значение уточняют по минимальному расходу наружного воздуха:

L>min>=n  m  z = 80  25  1,3 = 2600 м3

где m = 25 м3/ч–норма воздуха на одного работника,

z =1,3 –коэффициент запаса.

n = 80 – число работников

Окончательно L>М> = 34286 м3

Аэродинамический расчет ведут при заданных для каждого участка вентсети значений их длин L, м, и расходов воздуха L, м3/ч. Для этого определяют:

    Количество вытяжного воздуха по магистральным и другим воздуховодам;

    Суммарное значение коэффициентов местных сопротивлений по i-участкам по формуле:

>пов> – коэффициент местного сопротивления поворота (табл. 6 [2]);

>ВТ> = >ВТ> n – суммарный коэффициент местного сопротивления вытяжных тройников;

>СП> – коэффициент местного сопротивления при сопряжении потоков под острым углом, >СП> = 0,4.

В соответствии с построенной схемой воздуховодов определяем коэффициент местных сопротивлений. Всасывающая часть воздуховода объединяет четыре отсоса и после вентилятора воздух нагнетается по двум направлениям.

На участках а, 1, 2 и 3 давление теряется на входе в двух (четырех) отводах и в тройнике. Коэффициент местного сопротивления на входе зависит от выбранной конструкции конического коллектора. Последний устанавливается под углом  = 30 и при соотношении l/d>0> = 0,05, тогда по справочным данным коэффициент равен 0,8. Два одинаковых круглых отвода запроектированы под углом  = 90 и с радиусом закругления R>0>/d>э> =2.

Для них по табл. 14.11 [3] коэффициент местного сопротивления >0> = 0,15.

Потерю давления в штанообразном тройнике с углом ответления в 15 ввиду малости (кроме участка 2) не учитываем. Таким образом, суммарный коэффициент местных сопротивлений на участках а,1,2,3

 = 0,8 + 2  0,15 = 1,1

На участках б и в местные потери сопротивления только в тройнике, которые ввиду малости (0,01…0,003) не учитываем. На участке г потери давления в переходном патрубке от вентилятора ориентировочно оценивают коэффициентом местного сопротивления >г> = 0,1. На участке д расположено выпускная шахта, коэффициент местного сопротивления зависит от выбранной её конструкции. Поэтому выбираем тип шахты с плоским экраном и его относительным удлинением 0,33 (табл. 1-28 [2]), а коэффициент местного сопротивления составляет 2,4. Так как потерей давления в тройнике пренебрегаем, то на участке д (включая и ПУ) получим > = 2,4. На участке 4 давление теряется на свободный выход ( = 1,1 по табл. 14-11 [3]) и в отводе ( = 0,15 по табл. 14-11 [3]). Кроме того, следует ориентировочно предусмотреть потерю давления на ответвление в тройнике ( = 0,15), так как здесь может быть существенный перепад скоростей. Тогда суммарный коэффициент местных сопротивлений на участке 4

>4> = 1,1 + 0,15 + 0,15 = 1,4

Определение диаметров воздуховодов из уравнения расхода воздуха:

Вычисленные диаметры округляются до ближайших стандартных диаметров по приложению 1 книги [3]. По полученным значениям диаметров пересчитывается скорость.

По вспомогательной таблице из приложения 1 книги [3] определяются динамическое давление и приведенный коэффициент сопротивления трения. Подсчитываются потери давления:

Для упрощения вычислений составлена таблица с результатами:

N участка

L, м



L>1>, м3

d, мм

V, м/с

Па

Р, Па

РI, Па

Р, Па

а

7

1.1

8572

400

19

216

0.04

0.28

1.38

298

298

б

8

17143

560

19.4

226

0.025

0.2

0.2

45.2

343

в

3,5

34286

800

19

216

0.015

0.053

0.053

11.4

354.4

г

3,5

0.1

34286

800

19

216

0.015

0.053

0.153

33

387

д

6

2.4

25715

675

23

317

0.02

0.12

2.52

799

1186

1

7

1.1

8572

400

19

216

0.04

0.28

1.38

298

298

2

7

1.1

8572

400

19

216

0.04

0.28

1.38

298

343

45

3

7

1.1

8572

400

19

216

0.04

0.28

1.38

298

343

45

4

4

1.4

8572

400

19

216

0.04

0.16

1.56

337

799

462

Как видно из таблицы, на участке 4 получилась недопустимая невязка в 462 Па (57%).

Как видно из таблицы, на участке 2, 3 получилась недопустимая невязка в 45 Па (13%).

Для участка 4: уменьшаем d с 400 мм до 250 мм, тогда

м/с,

при этом =418 Па и = 0.08, Р = 780 Па, >>Р = 80 Па,  .

Для участка 2 и 3: уменьшаем d с 400 мм до 250 мм, тогда V = 10 м/с, при этом = 226 Па и = 0.25, Р = 305 Па, >>Р = 80 Па,  .

Выбор вентилятора.

Из приложения 1 книги [3] по значениям L>потр> = 34286 м3/ч и РI = 1186 Па выбран вентилятор Ц-4-76 №12.5 Q> – 35000 м3/ч, М> – 1400 Па, > = 0,84, >п> = 1. Отсюда установленная мощность электродвигателя составляет:

где Q> – принятая производительность вентилятора, N> – принятый напор вентилятора, >= - кпд вентилятора, >п> – кпд передачи.

Из приложения 5 книги [3] по значениям N = 75 кВт и  = 1000 об/мин выбран электродвигатель АО2-92-6 (АО» – защитное исполнение, 92 – размер наружного диаметра, 6 – число полюсов). Схема электродвигателя показана на рис.3.2.


Рис. 3.2. Схема электродвигателя А02-92-6

При этом необходимо предусмотреть установку реверсивных магнитных пускателей для реверсирования воздуха при соответствующих аварийных ситуациях в данном помещении.

Вентилятор и электродвигатель устанавливаются на железной раме при их одноосном расположении. Для виброизоляции рама устанавливается на виброизолирующие материал. На воздухоотводе устанавливают диафрагму, а между ними и вентилятором переходник.

Список использованной литературы:

    Бережной С.А., Романов В.В., Седов Ю.И. Безопасность жизнедеятельности: Учебное пособие. – Тверь: ТГТУ, 1996.

    Практикум по безопасности жизнедеятельности:/С.А.Бережной, Ю.И.Седов, Н.С.Любимова и др.; Под ред С.А.Бережного. – Тверь: ТГТУ, 1997.

    Калинуткин М.П. Вентиляторные установки, Высшая школа, 1979.

Äèñöèïëèíà: Áåçîïàñíîñòü æèçíåäåÿòåëüíîñòè Àâòîð: Ðîìàí Ñèäîðîâ Ïðèñëàë: Ñåðãåé Ïîëÿêîâ (kosh_s@mail.ru) Íàçâàíèå ðàáîòû: Ïðîåêòèðîâàíèå ïðèòî÷íîé è âûòÿæíîé ìåõàíè÷åñêîé âåíòèëÿöèè Ðàñ÷åòíî-ãðàôè÷åñêàÿ ðàáîòà Ñäàâàëñÿ â 2000 ãîäó â Òâåðñêîì Ãîñóäàðñòâåííîì Òåõíè÷åñêîì Óíèâåðñèòåòå íà êàôåäðå áåçîïàñíîñòè æèçíåäåÿòåëüíîñòè è ýêîëîãèè ïðîôåññîðó Áåðåæíîìó À.Ñ.