Основные вредные и опасные производственные факторы

Российская экономическая академия им.Г.В.Плеханова

Фак. Международный бизнес и деловое администрирование

Реферат на тему:

«Основные вредные и опасные производственные факторы»

Москва 1998

План

Введение

1. МЕТЕОРОЛОГИЧЕСКИЕ УСЛОВИЯ ПРОИЗВОДСТВЕННОЙ СРЕДЫ

2. ВРЕДНЫЕ ХИМИЧЕСКИЕ ВЕЩЕСТВА

3. ПРОИЗВОДСТВЕННЫЙ ШУМ

4. УЛЬТРАЗВУК И ИНФРАЗВУК

5. ПРОИЗВОДСТВЕННАЯ ВИБРАЦИЯ

6. ЭЛЕКТРОМАГНИТНЫЕ, ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ПОЛЯ. СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО

7. ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ

8. ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ

ЛИТЕРАТУРА.

Введение

На человека в процессе его тру­довой деятельности могут воз­действовать опасные (вызыва­ющие травмы) и вредные (вызы­вающие заболевания)производ­ственные факторы. Опасные и вредные производственные фак­торы (ГОСТ 12.0.003-74) подраз­деляются на четыре группы: физические,химические,биоло­гические и психофизиологичес­кие.

К опасным физическим фак­торам относятся: движущиеся машины и механизмы; различные подъемно-транспортные устрой­ства и перемещаемые грузы; не­защищенные подвижные элемен­ты производственного оборудова­ния (приводные и передаточные механизмы, режущие инструмен­ты, вращающиеся и перемещаю­щиеся приспособления и др.); отлетающие частицы обрабатыва­емого материала и инструмента, электрический ток, повышенная температура поверхностей обору­дования и обрабатываемых мате­риалов и т.д.

Вредными для здоровья физи­ческими факторами являются: повышенная или пониженная тем­пература воздуха рабочей зоны; высокие влажность и скорость дви­жения воздуха; повышенные уровни шума, вибрации, ультразвука и различных излучений - тепловых, ионизирующих, электромагнитных, инфракрасных и др. К вредным физическим факторам относятся также запыленность и загазован­ность воздуха рабочей зоны; недо­статочная освещенность рабочих мест, проходов и проездов; повы­шенная яркость света и пульсация светового потока.

Химические опасные и вред­ные производственные факторы по характеру действия на орга­низм человека подразделяются на следующие подгруппы: обще­токсические, раздражающие, сенсибилизирующие (вызывающие аллергические заболевания), кан­церогенные (вызывающие развитие опухолей), мутогенные (действую­щие на половые клетки организма). В эту группу входят многочислен­ные пары и газы: пары бензола и толуола, окись углерода, сернис­тый ангидрид, окислы азота, аэро­золи свинца и др., токсичные пыли, образующиеся, например, при об­работке резанием бериллия, свин­цовистых бронз и латуней и некото­рых пластмасс с вредными напол­нителями. К этой группе относятся агрессивные жидкости (кислоты, щелочи), которые могут причинить химические ожоги кожного покрова при соприкосновении с ними.

К биологическим опасным и вредным производственным факторам относятся микроорга­низмы (бактерии, вирусы и др.) и макроорганизмы (растения и жи­вотные), воздействие которых на работающих вызывает травмы или заболевания.

К психофизиологическим опас­ным и вредным производствен­ным факторам относятся физи­ческие перегрузки (статические и динамические) и нервно-психичес­кие перегрузки (умственное пере­напряжение, перенапряжение ана­лизаторов слуха, зрения и др.).

Между вредными и опасными про­изводственными факторами наблю­дается определенная взаимосвязь. Во многих случаях наличие вредных факторов способствует проявлению травмоопасных факторов. Напри­мер, чрезмерная влажность в про­изводственном помещении и нали­чие токопроводящей пыли (вред­ные факторы) повышают опасность поражения человека электрическим током (опасный фактор).

Уровни воздействия на работаю­щих вредных производственных факторов нормированы предельно-допустимыми уровнями, значения которых указаны в соответствующих стандартах системы стандартов безопасности труда и санитарно-гигиенических правилах.

Предельно допустимое значе­ние вредного производственно­го фактора (по ГОСТ 12.0.002-80) - это предельное значение вели­чины вредного производствен­ного фактора, воздействие ко­торого при ежедневной регла­ментированной продолжитель­ности в течение всего трудового стажа не приводит к снижению работоспособности и заболева­нию как в период трудовой дея­тельности, так и к заболеванию в последующий период жизни, а также не оказывает неблагопри­ятного влияния на здоровье по­томства.

1. МЕТЕОРОЛОГИЧЕСКИЕ УСЛОВИЯ ПРОИЗВОДСТВЕННОЙ СРЕДЫ

Микроклимат производствен­ных помещений определяется сочетанием температуры, влаж­ности, подвижности воздуха, температуры окружающих по­верхностей и их тепловым излу­чением. Параметры микрокли­мата определяют теплообмен организма человека и оказыва­ют существенное влияние на функциональное состояние раз­личных систем организма, са­мочувствие, работоспособность и здоровье.

Температура в производственных помещениях является одним из ве­дущих факторов, определяющих метеорологические условия произ­водственной среды.

Высокие температуры оказывают отрицательное воздействие на здо­ровье человека. Работа в условиях высокой температуры сопровожда­ется интенсивным потоотделением, что приводит к обезвоживанию ор­ганизма, потере минеральных со­лей и водорастворимых витами­нов, вызывает серьезные и стой­кие изменения в деятельности сер­дечно-сосудистой системы, увели­чивает частоту дыхания, а также оказывает влияние на функциони­рование других органов и систем - ослабляется внимание, ухудшает­ся координация движений, замед­ляются реакции и т.д.

Длительное воздействие высокой температуры, особенно в сочетании с повышенной влажностью, может привести к значительному накопле­нию тепла в организме (гипертермии). При гипертермии наблюда­ется головная боль, тошнота, рво­та, временами судороги, падение артериального давления, потеря со­знания.

Действие теплового излучения на организм имеет ряд особенностей, одной из которых является способ­ность инфракрасных лучей различ­ной длины проникать на различную глубину и поглощаться соответству­ющими тканями, оказывая тепло­вое действие, что приводит к повы­шению температуры кожи, увеличе­нию частоты пульса, изменению обмена веществ и артериального давления, заболеванию глаз.

При воздействии на организм че­ловека отрицательных температур наблюдается сужение сосудов паль­цев рук и ног, кожи лица, изменя­ется обмен веществ. Низкие темпе­ратуры воздействуют также и на внутренние органы, и длительное воздействие этих температур при­водит к их устойчивым заболевани­ям.

Параметры микроклимата произ­водственных помещений зависят от теплофизических особенностей тех­нологического процесса, климата, сезона года, условий отопления и вентиляции.

Тепловое излучение (инфра­красное излучение) представляет собой невидимое электромагнитное излучение с длиной волны от 0,76 до 540 нм, обладающее волновыми, квантовыми свойствами. Интенсив­ность теплоизлучения измеряется в Вт/м2. Инфракрасные лучи, проходя через воздух, его не нагревают, но поглотившись твердыми телами, лучистая энергия переходит в теп­ловую, вызывая их нагревание. Источником инфракрасного излуче­ния является любое нагретое тело.

Метеорологические условия для рабочей зоны производ­ственных помещений регламен­тируются ГОСТ 12.1.005-88 "Об­щие санитарно-гигиенические требования к воздуху рабочей зоны" и Санитарными нормами микроклимата производствен­ных помещений (СН 4088-86).

Принципиальное значение в нор­мах имеет раздельное нормирова­ние каждого компонента микрокли­мата: температуры, влажности, ско­рости движения воздуха. В рабочей зоне должны обеспечиваться пара­метры микроклимата, соответству­ющие оптимальным и допустимым значениям.

Борьба с неблагоприятным влия­нием производственного микрокли­мата осуществляется с использова­нием технологических, санитарно-технических и медико-профилакти­ческих мероприятий.

В профилактике вредного влия­ния высоких температур инфракрас­ного излучения ведущая роль при­надлежит технологическим мероп­риятиям: замена старых и внедре­ние новых технологических процес­сов и оборудования, автоматиза­ция и механизация процессов, ди­станционное управление.

К группе санитарно-технических мероприятий относятся средства локализации тепловыделений и теп­лоизоляции, направленные на сни­жение интенсивности теплового из­лучения и тепловыделений от обо­рудования.

Эффективными средствами снижения тепловыделений явля­ются:

покрытие нагревающихся повер­хностей и парогазотрубопроводов теплоизоляционными материалами (стекловата, асбестовая мастика, асботермит и др.); герметизация оборудования; применение отражательных, теплопоглотительных и теплоотводящих экранов; устройство вентиляционных сис­тем; использование индивидуальных средств защиты. К медико-профилактическим ме­роприятиям относятся: организация рационального ре­жима труда и отдыха; обеспечение питьевого режима; повышение устойчивости к высо­ким температурам путем использо­вания фармакологических средств (прием дибазола, аскорбиновой кислоты, глюкозы), вдыхания кис­лорода; прохождение предварительных при поступлении на работу и пери­одических медицинских осмотров.

Мероприятия по профилактике неблагоприятного воздействия хо­лода должны предусматривать за­держку тепла - предупреждение выхолаживания производственных помещений, подбор рациональных режимов труда и отдыха, использо­вание средств индивидуальной за­щиты, а также мероприятия по по­вышению защитных сил организма.

2. ВРЕДНЫЕ ХИМИЧЕСКИЕ ВЕЩЕСТВА

Под вредным понимается ве­щество, которое при контакте с организмом человека вызывает производственные травмы, про­фессиональные заболевания или отклонения в состоянии здоро­вья. Классификация вредных веществ и общие требования безопасности введены ГОСТ 12.1.007-76.

Степень и характер вызываемых веществом нарушений нормальной работы организма зависит от пути попадания в организм, дозы, вре­мени воздействия, концентрации вещества, его растворимости, со­стояния воспринимающей ткани и организма в целом, атмосферного давления, температуры и других ха­рактеристик окружающей среды.

Следствием действия вредных веществ на организм могут быть анатомические повреждения, по­стоянные или временные расстрой­ства и комбинированные послед­ствия. Многие сильно действую­щие вредные вещества вызывают в организме расстройство нор­мальной физиологической деятель­ности без заметных анатомических повреждений, воздействий на ра­боту нервной и сердечно-сосудис­той систем, на общий обмен ве­ществ и т.п.

Вредные вещества попадают е организм через органы дыхания, желудочно-кишечный тракт и через кожный покров. Наиболее вероятно проникновение в организм веществ в виде газа, пара и пыли через органы дыхания (около 95 % всех отравлений).

Выделение вредных веществ в воздушную среду возможно при проведении технологических про­цессов и производстве работ, свя­занных с применением, хранением, транспортированием химически> веществ и материалов, их добычею и изготовлением.

Пыль является наиболее распро­страненным неблагоприятным фак­тором производственной среды, Многочисленные технологические процессы и операции в промыш­ленности, на транспорте, в сельс­ком хозяйстве сопровождаются об­разованием и выделением пыли, ее воздействию могут подвергаться большие контингенты работающих.

Основой проведения мероприя­тий по борьбе с вредными веще­ствами является гигиеническое нор­мирование.

Предельно допустимые кон­центрации (ПДК) вредных ве­ществ в воздухе рабочей зоны установлены ГОСТ 12.1.005-88.

Снижение уровня воздействия не работающих вредных веществ wm его полное устранение достигаете? путем проведения технологических, санитарно-технических, лечебно-профилактических мероприятий v применением средств индивиду­альной защиты.

К технологическим мероприяти­ям относятся такие как внедрение непрерывных технологий, автома­тизация и механизация производ­ственных процессов, дистанцион­ное управление, герметизация обо­рудования, замена опасных техно­логических процессов и операции менее опасными и безопасными.

Санитарно-технические мероп­риятия: оборудование рабочих мест мес­тной вытяжной вентиляцией или переносными местными отсосами, укрытие оборудования сплошными пыленепроницаемыми кожухами с эффективной аспирацией воздуха и др.

Когда технологические, санитарно-технические меры не полностью исключают наличие вредных ве­ществ в воздушной среде, отсут­ствуют методы и приборы для их контроля, проводятся лечебно-про­филактические мероприятия: орга­низация и проведение предвари­тельных и периодических медицин­ских осмотров, дыхательной гимна­стики, щелочных ингаляций, обес­печение лечебно-профилактическим питанием и молоком и др.

Особое внимание в этих случа­ях должно уделяться примене­нию средств индивидуальной защиты, прежде всего для за­щиты органов дыхания (фильт­рующие и изолирующие проти­вогазы, респираторы, защитные очки, специальная одежда).

3. ПРОИЗВОДСТВЕННЫЙ ШУМ

Интенсивное шумовое воздей­ствие на организм человека небла­гоприятно влияет на протекание нервных процессов, способствует развитию утомления, изменениям в сердечно-сосудистой системе и появлению шумовой патологии, сре­ди многообразных проявлений ко­торой ведущим клиническим при­знаком является медленно прогрес­сирующее снижение слуха по типу кохлеарного неврита.

В производственных условиях ис­точниками шума являются работаю­щие станки и механизмы, ручные механизированные инструменты, электрические машины, компрессо­ры, кузнечно-прессовое, подъемно-транспортное, вспомогательное обо­рудование (вентиляционные уста­новки, кондиционеры) и т.д.

Допустимые шумовые характе­ристики рабочих мест регламен­тируются ГОСТ 12.1.003-83 "Шум, общие требования безопаснос­ти" (изменение I.III.89) и Сани­тарными нормами допустимых уровней шума на рабочих местах (СН 3223-85) с изменениями и до­полнениями от 29.03.1988 года №122-6/245-1.

По характеру спектра шумы под­разделяются на широкополосные и тональные.

По временным характеристикам шумы подразделяются на постоян­ные и непостоянные. В свою оче­редь непостоянные шумы подраз­деляются на колеблющиеся во вре­мени, прерывистые и импульсные.

В качестве характеристик посто­янного шума на рабочих местах, а также для определения эффектив­ности мероприятий по ограничению его неблагоприятного влияния, при­нимаются уровни звукового давле­ния в децибелах (дБ) в октавных полосах со среднегеометрически­ми частотами 31,5; 63; 125; 250; 1000; 2000; 4000; 8000 Гц.

В качестве общей характеристи­ки шума на рабочих местах приме­няется оценка уровня звука в дБ(А), представляющая собой среднюю величину частотных характеристик звукового давления.

Характеристикой непостоянного шума на рабочих местах является интегральный параметр - эквива­лентный уровень звука в дБ(А).

Основные мероприятия по борьбе с шумом - это техничес­кие мероприятия, которые про­водятся по трем главным на­правлениям:

- устранение причин возникнове­ния шума или снижение его в источ­нике;

- ослабление шума на путях пере­дачи;

- непосредственная защита рабо­тающих.

Наиболее эффективным сред­ством снижения шума является за­мена шумных технологических опе­раций на малошумные или полнос­тью бесшумные, однако этот путь борьбы не всегда возможен, поэто­му большое значение имеет сниже­ние его в источнике. Снижение шума в источнике достигается путем со­вершенствования конструкции или схемы той части оборудования, ко­торая производит шум, использования в конструкции материалов с пониженными акустическими свой­ствами, оборудования на источнике шума дополнительного звукоизоли­рующего устройства или огражде­ния, расположенного по возможно­сти ближе к источнику.

Одним из наиболее простых тех­нических средств борьбы с шумом на путях передачи является звуко­изолирующий кожух, который мо­жет закрывать отдельный шумный узел машины.

Значительный эффект снижения шума от оборудования дает приме­нение акустических экранов, отго­раживающих шумный механизм от рабочего места или зоны обслужи­вания машины.

Применение звукопоглощающих облицовок для отделки потолка и стен шумных помещений приводит к изменению спектра шума в сторо­ну более низких частот, что даже при относительно небольшом сни­жении уровня существенно улучша­ет условия труда.

Учитывая, что с помощью тех­нических средств в настоящее время не всегда удается решить проблему снижения уровня шума большое внимание должно уде­ляться применению средств ин­дивидуальной защиты (антифо­ны, заглушки и др.). Эффектив­ность средств индивидуальной защиты может быть обеспечена их правильным подбором в за­висимости от уровней и спектра шума, а также контролем за ус­ловиями их эксплуатации.

4. УЛЬТРАЗВУК И ИНФРАЗВУК

В последнее время все более широкое распространение в произ­водстве находят технологические процессы, основанные на исполь­зовании энергии ультразвука. Уль­тразвук нашел также применение в медицине. В связи с ростом еди­ничных мощностей и скоростей раз­личных агрегатов и машин растут /ровни шума, в том числе и в ультразвуковой области частот.

Ультразвуком называют меха­нические колебания упругой сре­ды с частотой, превышающей верхний предел слышимости -20 кГц. Единицей измерения уровня звукового давления яв­ляется дБ. Единицей измерения интенсивности ультразвука яв­ляется ватт на квадратный сан­тиметр (Вт/см2).

Ультразвук обладает главным об­разом локальным действием на организм, поскольку передается при непосредственном контакте с ульт­развуковым инструментом, обра­батываемыми деталями или среда­ми, где возбуждаются ультразвуко­вые колебания. Ультразвуковые ко­лебания, генерируемые ультразву­ком низкочастотным промышленным оборудованием, оказывают небла­гоприятное влияние на организм человека. Длительное системати­ческое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения не­рвной, сердечно-сосудистой и эн­докринной систем, слухового и ве­стибулярного анализаторов. Наи­более характерным является нали­чие вегетососудистой дистонии и астенического синдрома.

Степень выраженности изменений зависит от интенсивности и дли­тельности воздействия ультразву­ка и усиливается при наличии в спектре высокочастотного шума, при этом присоединяется выражен­ное снижение слуха. В случае про­должения контакта с ультразвуком указанные расстройства приобре­тают более стойкий характер.

При действии локального ультра­звука возникают явления вегетатив­ного полиневрита рук (реже ног) разной степени выраженности, вплоть до развития пареза кистей и предплечий, вегетативно-сосуди­стой дисфункции.

Характер изменений, возникаю­щих в организме под воздействием ультразвука, зависит от дозы воз­действия.

Малые дозы - уровень звука 80-90 дБ - дают стимулирующий эф­фект - микромассаж, ускорение об­менных процессов. Большие дозы - уровень звука 120 и более дБ – дают поражающий эффект.

Основу профилактики неблагоп­риятного воздействия ультразвука на лиц, обслуживающих ультразву­ковые установки, составляет гигие­ническое нормирование.

В соответствии с ГОСТ 12.1.01-89 "Ультразвук. Общие требования безопасности", "Санитарными нормами и пра­вилами при работе на промыш­ленных ультразвуковых уста­новках" (№ 1733-77) ограничи­ваются уровни звукового давле­ния в высокочастотной области слышимых звуков и ультразву­ков на рабочих местах (от 80 до 110 дБ при среднегеометричес­ких частотах третьоктавных по­лос от 12,5 до 100 кГц).

Ультразвук, передающийся кон­тактным путем, нормируется "Са­нитарными нормами и правила­ми при работе с оборудованием, создающим ультразвуки, пере­дающиеся контактным путем на руки работающих" № 2282-80.

Меры предупреждения неблагоп­риятного действия ультразвука на организм операторов технологичес­ких установок, персонала лечебно-диагностических кабинетов состо­ят в первую очередь в проведении мероприятий технического харак­тера. К ним относятся создание ав­томатизированного ультразвуково­го оборудования с дистанционным управлением; использование по воз­можности маломощного оборудова­ния, что способствует снижению интенсивности шума и ультразвука на рабочих местах на 20-40 дБ;

размещение оборудования в звуко-изолированных помещениях или кабинетах с дистанционным управ­лением; оборудование звукоизоли­рующих устройств, кожухов, экра­нов из листовой стали или дюралю­миния, покрытых резиной, противошумной мастикой и другими ма­териалами.

При проектировании ультразву­ковых установок целесообразно ис­пользовать рабочие частоты, наи­более удаленные от слышимого диапазона - не ниже 22 кГц.

Чтобы исключить воздействие ультразвука при контакте с жидки­ми и твердыми средами, необхо­димо устанавливать систему авто­матического отключения ультразву­ковых преобразователей при опе­рациях, во время которых возмо­жен контакт (например, загрузка и выгрузка материалов). Для защи­ты рук от контактного действия ультразвука рекомендуется приме­нение специального рабочего ин­струмента с виброизолирующей рукояткой.

Если по производственным при­чинам невозможно снизить уровень интенсивности шума и ультразвука до допустимых значений, необхо­димо использование средств инди­видуальной защиты - противошумов, резиновых перчаток с хлопча­тобумажной прокладкой и др.

Развитие техники и транспортны) средств, совершенствование тех­нологических процессов и оборудо­вания сопровождаются увеличени­ем мощности и габаритов машин что обусловливает тенденцию по­вышения низкочастотных составля­ющих в спектрах и появление инф­развука, который является сравнительно новым, не полностью изученным фактором производственной среды.

Инфразвуком называют акустические колебания с частого! ниже 20 Гц. Этот частотный диапазон лежит ниже порога слышимости и человеческое ухо не способно воспринимать колебания указанных частот.

Производственный инфразвук возникает за счет тех же процессов что и шум слышимых частот. Наибольшую интенсивность инфразвуковых колебаний создают машины и механизмы, имеющие поверхности больших размеров, совершающие низкочастотные механически! колебания (инфразвук механического происхождения) или турбулентные потоки газов и жидкостей (инфразвук аэродинамического ил! гидродинамического происхождения).

Максимальные уровни низкочастотных акустических колебаний от промышленных и транспортных ис­точников достигают 100-110 дБ.

Исследования биологического действия инфразвука на организм показали, что при уровне от 110 до 150 дБ и более он может вызывать у людей неприятные субъективные ощущения и многочисленные реак­тивные изменения, к числу которых следует отнести изменения в цент­ральной нервной, сердечно-сосуди­стой и дыхательной системах, вес­тибулярном анализаторе. Имеются данные о том, что инфразвук вызы­вает снижение слуха преимуще­ственно на низких и средних часто­тах. Выраженность этих изменений зависит от уровня интенсивности инфразвука и длительности дей­ствия фактора.

В соответствии с Гигиеничес­кими нормами инфразвука на рабочих местах (№ 2274-80) по характеру спектра инфразвук под­разделяется на широкополосный и гармонический. Гармонический ха­рактер спектра устанавливают в октавных полосах частот по превы­шению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам инфразвук подразделяется на по­стоянный и непостоянный.

Нормируемыми характеристика­ми инфразвука на рабочих местах являются уровни звукового давле­ния в децибелах в октавных полосах частот со среднегеометрическими частотами 2, 4, 8, 16 Гц.

Допустимыми уровнями звуково­го давления являются 105 дБ в октавных полосах 2, 4, 8, 16 Гц и 102 дБ в октавной полосе 31,5 Гц. При этом общий уровень звуково­го давления не должен превышать 110 дБ Лин.

Для непостоянного инфразвука нормируемой характеристикой яв­ляется общий уровень звукового давления.

Наиболее эффективным и прак­тически единственным средством борьбы с инфразвуком является снижение его в источнике. При вы­боре конструкций предпочтение

должно отдаваться малогабарит­ным машинам большой жесткости, так как в конструкциях с плоскими поверхностями большой площади и малой жесткости создаются ус­ловия для генерации инфразвука. Борьбу с инфразвуком в источнике возникновения необходимо вести в направлении изменения режима работы технологического оборудо­вания - увеличения его быстроход­ности (например, увеличение чис­ла рабочих ходов кузнечно-прессовых машин, чтобы основная часто­та следования силовых импульсов лежала за пределами инфразвукового диапазона).

Должны приниматься меры по сни­жению интенсивности аэродинами­ческих процессов - ограничение скоростей движения транспорта, снижение скоростей истечения жид­костей (авиационные и ракетные двигатели, двигатели внутреннего сгорания, системы сброса пара теп­ловых электростанций и т.д.).

В борьбе с инфразвуком на путях распространения определенный эффект оказывают глушители ин­терференционного типа, обычно при наличии дискретных составляющих в спектре инфразвука.

Выполненное в последнее время теоретическое обоснование течения нелинейных процессов в поглотите­лях резонансного типа открывает реальные пути конструирования зву­копоглощающих панелей, кожухов, эффективных в области низких ча­стот.

В качестве индивидуальных средств защиты рекомендуется применение наушников, вклады­шей, защищающих ухо от небла­гоприятного действия сопут­ствующего шума.

К мерам профилактики орга­низационного плана следует от­нести соблюдение режима тру­да и отдыха, запрещение сверхурочных работ. При кон­такте с ультразвуком более 50% рабочего времени рекомендуют­ся перерывы продолжительнос­тью 15 мин через каждые 1,5 часа работы. Значительный эффект дает комплекс физиотерапевти­ческих процедур - массаж, УТ-облучение, водные процедуры, витаминизация и др.

5. ПРОИЗВОДСТВЕННАЯ ВИБРАЦИЯ

Длительное воздействие вибра­ции высоких уровней на организм человека приводит к развитию преждевременного утомления, снижению производительности труда, росту заболеваемости и нередко к возникновению профес­сиональной патологии - вибраци­онной болезни.

Вибрация - это механическое ко­лебательное движение системы с упругими связями.

Вибрацию по способу передачи на человека (в зависимости от ха­рактера контакта с источниками виб­рации) условно подразделяют на:

местную (локальную), передающу­юся на руки работающего, и об­щую, передающуюся через опор­ные поверхности на тело человека в положении сидя (ягодицы) или стоя (подошвы ног). Общая вибрация в практике гигиенического нормиро­вания обозначается как вибрация рабочих мест. В производственных условиях нередко имеет место сочетанное действие местной и об­щей вибрации.

Производственная вибрация по своим физическим характеристи­кам имеет довольно сложную клас­сификацию.

По характеру спектра вибрация подразделяется на узкополосную и широкополосную; по частотному составу - на низкочастотную с пре­обладанием максимальных уров­ней в октавных полосах 8 и 16 Гц, среднечастотную - 31,5 и 63 Гц, высокочастотную - 125, 250, 500, 1000 Гц - для локальной вибрации;

для вибрации рабочих мест - со­ответственно 1 и 4 Гц, 8 и 16 Гц, 31,5 и 63 Гц.

По временным характеристикам рассматривают вибрацию: посто­янную, для которой величина виб­роскорости изменяется не более чем в 2 раза (на 6 дБ) за время наблю­дения не менее 1 мин; непостоян­ную, для которой величина виброскорости изменяется не менее чем в 2 раза (на 6 дБ) за время наблюде­ния не менее 1 мин.

Непостоянная вибрация в свою очередь подразделяется на колеб­лющуюся во времени, для которой уровень виброскорости непрерыв­но изменяется во времени; преры­вистую, когда контакт оператора с вибрацией в процессе работы пре­рывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1 с; импульсную, состоящую из одного или нескольких вибраци­онных воздействий (например, уда­ров), каждый длительностью менее 1 с при частоте их следования ме­нее 5, 6 Гц.

Производственными источниками локальной вибрации являются руч­ные механизированные машины ударного, ударно-вращательного и вращательного действия с пневма­тическим или электрическим при­водом.

Инструменты ударного действия основаны на принципе вибрации. К ним относятся клепальные, рубильные, отбойные молотки, пневмотрамбовки.

К машинам ударно-вращательно­го действия относятся пневмати­ческие и электрические перфораторы. Применяются в горнодобываю­щей промышленности, преимуще­ственно при буровзрывном способе добычи.

К ручным механизированным ма­шинам вращательного действия от­носятся шлифовальные, сверлиль­ные машины, электро- и бензомо­торные пилы.

Локальная вибрация также имеет место при точильных, наждачных, шлифовальных, полировальных ра­ботах, выполняемых на стационар­ных станках с ручной подачей изде­лий; при работе ручными инстру­ментами без двигателей, например, рихтовочные работы.

Основными нормативными пра­вовыми актами, регламентиру­ющими параметры производственных вибраций, являются:

"Санитарные нормы и правила при работе с машинами и обору­дованием, создающими локаль­ную вибрацию, передающуюся на руки работающих" № 3041 -84 и "Санитарные нормы вибрации рабочих мест" № 3044-84.

В настоящее время около 40 госу­дарственных стандартов регламен­тируют технические требования к вибрационным машинам и обору­дованию, системам виброзащиты, методам измерения и оценки пара­метров вибрации и другие усло­вия.

Наиболее действенным средством защиты человека от вибрации яв­ляется устранение непосредствен­но его контакта с вибрирующим обо­рудованием. Осуществляется это путем применения дистанционного управления, промышленных робо­тов, автоматизации и замены тех­нологических операций.

Снижение неблагоприятного действия вибрации ручных ме­ханизированных инструментов на оператора достигается путем технических решений:

уменьшением интенсивности виб­рации непосредственно в источни­ке (за счет конструктивных усовер­шенствований);

средствами внешней виброзащи­ты, которые представляют собой упругодемпфирующие материалы и устройства, размещенные между источником вибрации и руками че­ловека-оператора.

В комплексе мероприятий важная роль отводится разработке и вне­дрению научно обоснованных режи­мов труда и отдыха. Например, сум­марное время контакта с вибраци­ей не должно превышать 2/3 про­должительности рабочей смены; ре­комендуется устанавливать 2 рег­ламентируемых перерыва для ак­тивного отдыха, проведения физиопрофилактических процедур, про­изводственной гимнастики по спе­циальному комплексу.

В целях профилактики небла­гоприятного воздействия ло­кальной и общей вибрации ра­ботающие должны использо­вать средства индивидуальной защиты: рукавицы или перчат­ки (ГОСТ 12.4.002-74. "Средства индивидуальной защиты рук от вибрации. Общие требования"); спецобувь (ГОСТ 12.4.024-76. "Обувь специальная виброза­щитная").

На предприятиях с участием санэпиднадзора медицинских учреж­дений, служб охраны труда должен быть разработан конкретный комп­лекс медико-биологических профи­лактических мероприятий с учетом характера воздействующей вибра­ции и сопутствующих факторов про­изводственной среды.

6. ЭЛЕКТРОМАГНИТНЫЕ, ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ ПОЛЯ. СТАТИЧЕСКОЕ ЭЛЕКТРИЧЕСТВО

Опасное воздействие на работа­ющих могут оказывать электромаг­нитные поля радиочастот (60 кГц-300 ГГц) и электрические поля про­мышленной частоты (50 Гц).

Источником электрических по­лей промышленной частоты яв­ляются токоведущие части дей­ствующих электроустановок (линии электропередач, индукторы, конден­саторы термических установок, фидерные линии, генераторы, трансформаторы, электромагниты, соленоиды, импульсные установки полупериодного или конденсатор­ного типа, литые и металлокерамические магниты и др.). Длительное воздействие электрического поля на организм человека может выз­вать нарушение функционального состояния нервной и сердечно-со­судистой систем. Это выражается в повышенной утомляемости, сниже­нии качества выполнения рабочих операций, болях в области сердца, изменении кровяного давления и пульса.

Основными видами средств кол­лективной защиты от воздействия электрического поля токов промыш­ленной частоты являются экраниру­ющие устройства - составная часть электрической установки, предназ­наченная для защиты персонала в открытых распределительных уст­ройствах и на воздушных линиях электропередач.

Экранирующее устройство необ­ходимо при осмотре оборудования и при оперативном переключении, наблюдении за производством ра­бот. Конструктивно экранирующие устройства оформляются в виде козырьков, навесов или перегоро­док из металлических канатов, прут­ков, сеток.

Переносные экраны также исполь­зуются при работах по обслужива­нию электроустановок в виде съем­ных козырьков, навесов, перегоро­док, палаток и щитов.

Экранирующие устройства долж­ны иметь антикоррозионное покры­тие и заземлены.

Источником электромагнитных полей радиочастот являются:

в диапазоне 60 кГц - 3 МГц - не­экранированные элементы обору­дования для индукционной обра­ботки металла(закалка, отжиг, плав­ка, пайка, сварка и т.д.) и других материалов, а также оборудования и приборов, применяемых в радио­связи и радиовещании;

в диапазоне 3 МГц - 300 МГц -неэкранированные элементы обо­рудования и приборов, применяе­мых в радиосвязи, радиовещании, телевидении, медицине, а также оборудования для нагрева диэлек­триков (сварка пластикатов, нагрев пластмасс, склейка деревянных изделий и др.);

в диапазоне 300 МГц - 300 ГГц -неэкранированные элементы обо­рудования и приборов, применяе­мых в радиолокации, радиоастро­номии, радиоспектроскопии, физи­отерапии и т.п.

Длительное воздействие радио­волн на различные системы орга­низма человека по последствиям имеют многообразные проявления.

Наиболее характерными при воз­действии радиоволн всех диапазо­нов являются отклонения от нор­мального состояния центральной нервной системы и сердечно-сосу­дистой системы человека. Субъек­тивными ощущениями облучаемого персонала являются жалобы на ча­стую головную боль, сонливость или общую бессонницу, утомляемость, слабость, повышенную потливость, снижение памяти, рассеянность, го­ловокружение, потемнение в гла­зах, беспричинное чувство тревоги, страха и др.

Для обеспечения безопасности работ с источниками электромаг­нитных волн производится систе­матический контроль фактических нормируемых параметров на рабо­чих местах и в местах возможного нахождения персонала. Контроль осуществляется измерением напря­женности электрического и магнит­ного поля, а также измерением плот­ности потока энергии по утверж­денным методикам Министерства здравоохранения.

Защита персонала от воздей­ствия радиоволн применяется при всех видах работ, если усло­вия работы не удовлетворяют требованиям норм. Эта защита осуществляется следующими способами и средствами:

согласованных нагрузок и погло­тителей мощности, снижающих на­пряженность и плотность поля пото­ка энергии электромагнитных волн;

экранированием рабочего места и источника излучения;

рациональным размещением обо­рудования в рабочем помещении;

подбором рациональных режимов работы оборудования и режима тру­да персонала;

применением средств предупре­дительной защиты.

Наиболее эффективно использо­вание согласованных нагрузок и поглотителей мощности (эквивален­тов антенн) при изготовлении, на­стройке и проверке отдельных бло­ков и комплексов аппаратуры.

Эффективным средством защиты от воздействия электромагнитных излучений является экранирование источников излучения и рабочего места с помощью экранов, погло­щающих или отражающих электро­магнитную энергию. Выбор конст-рукции экранов зависит от характе­ра технологического процесса, мощ­ности источника, диапазона волн.

Отражающие экраны используют в основном для защиты от паразит­ных излучений (утечки из цепей в линиях передачи СВЧ-волн, из ка­тодных выводов магнетронов и дру­гих), а также в тех случаях, когда электромагнитная энергия не явля­ется помехой для работы генера­торной установки или радиолока­ционной станции. В остальных слу­чаях, как правило, применяются по­глощающие экраны.

Для изготовления отражающих экранов используются материалы с высокой электропроводностью, на­пример металлы (в виде сплошных стенок) или хлопчатобумажные тка­ни с металлической основой. Сплош­ные металлические экраны наибо­лее эффективны и уже при толщине 0,01 мм обеспечивают ослабление электромагнитного поля примерно на 50 дБ (в 100 000 раз).

Для изготовления поглощающих экранов применяются материалы с плохой электропроводностью. По­глощающие экраны изготавливают­ся в виде прессованных листов ре­зины специального состава с кони­ческими сплошными или полыми шипами, а также в виде пластин из пористой резины, наполненной кар­бонильным железом, с впрессован­ной металлической сеткой. Эти ма­териалы приклеиваются на каркас или на поверхность излучающего оборудования.

Важное профилактическое мероп­риятие по защите от электромаг­нитного облучения - это выполне­ние требований для размещения оборудования и для создания по­мещений, в которых находятся ис­точники электромагнитного излуче­ния.

Защита персонала от переоблуче­ния может быть достигнута за счет размещения генераторов ВЧ, УВЧ и СВЧ, а также радиопередатчиков в специально предназначенных поме­щениях.

Экраны источников излучения и рабочих мест блокируются с отклю­чающими устройствами, что позво­ляет исключить работу излучающе­го оборудования при открытом эк­ране.

Допустимые уровни воздей­ствия на работников и требова­ния к проведению контроля на рабочих местах для электричес­ких полей промышленной часто­ты изложены в ГОСТ 12.1.002-84, а для электромагнитных полей радиочастот - в ГОСТ 12.1.006-84.

На предприятиях широко исполь­зуют и получают в больших количе­ствах вещества и материалы, обла­дающие диэлектрическими свой­ствами, что способствует возникно­вению зарядов статического элект­ричества.

Статическое электричество обра­зуется в результате трения (сопри­косновения или разделения) двух диэлектриков друг о друга или ди­электриков о металлы. При этом на трущихся веществах могут накап­ливаться электрические заряды, которые легко стекают в землю, если тело является проводником элект­ричества и оно заземлено. На диэ­лектриках электрические заряды удерживаются продолжительное время, в следствие чего они полу­чили название статического элект­ричества.

Процесс возникновения и накоп­ления электрических зарядов в ве­ществах называют электризацией.

Явление статической электри­зации наблюдается в следующих основных случаях:

в потоке и при разбрызгивании жидкостей;

в струе газа или пара;

при соприкосновении и последу­ющем удалении двух твердых раз­нородных тел (контактная электри­зация).

Разряд статического электриче­ства возникает тогда, когда напря­женность электростатического поля над поверхностью диэлектрика или проводника, обусловленная накоп­лением на них зарядов, достигает критической (пробивной) величи­ны. Для воздуха пробивное напряжение составляет 30 кБ/см.

У людей, работающих в зоне воз­действия электростатического поля, встречаются разнообразные жало­бы: на раздражительность, голов­ную боль, нарушение сна, снижение аппетита и др.

Допустимые уровни напряжен­ности электростатических полей установлены ГОСТ 12.1.045-84 "Электростатические поля. До­пустимые уровни на рабочих местах и требования к проведе­нию Контроля" и Санитарно-гигиеническими нормами допусти­мой напряженности электроста­тического поля (№ 1757-77).

Эти нормативные правовые акты распространяются на электроста­тические поля, создаваемые при эк­сплуатации электроустановок высо­кого напряжения постоянного тока и электризации диэлектрических материалов, и устанавливают допу­стимые уровни напряженности элек­тростатических полей на рабочих местах персонала, а также общие требования к проведению контроля и средствам защиты.

Допустимые уровни напряженно­сти электростатических полей ус­танавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уро­вень напряженности электростати­ческих полей устанавливается рав­ным 60 кВ/м в течение 1 ч.

При напряженности электроста­тических полей менее 20 кВ/м вре­мя пребывания в электростатичес­ких полях не регламентируется.

В диапазоне напряженности от 20 до 60 кВ/м допустимое время пребывания персонала в электро­статическом поле без средств за­щиты зависит от конкретного уров­ня напряженности на рабочем ме­сте.

Меры защиты от статического электричества направлены на предупреждение возникновения и накопления зарядов статичес­кого электричества, создание условий рассеивания зарядов и устранение опасности их вредного воздействия.

К основным мерам защиты от­носят:

предотвращение накопления за­рядов на электропроводящих час­тях оборудования, что достигается заземлением оборудования и ком­муникаций, на которых могут по­явиться заряды (аппараты, резер­вуары, трубопроводы, транспорте­ры, сливоналивные устройства, эс­такады и т.п.); уменьшение электрического со­противления перерабатываемых веществ; снижение интенсивности зарядов статического электричества. Дости­гается соответствующим подбором скорости движения веществ, исклю­чением разбрызгивания, дробле­ния и распыления веществ, отво­дом электростатического заряда, подбором поверхностей трения, очи­сткой горючих газов и жидкостей от примесей;

отвод зарядов статического элек­тричества, накапливающихся на людях. Позволяет исключить опас­ность электрических разрядов, ко­торые могут вызвать воспламене­ние и взрыв взрыво- и пожароопас­ных смесей, а также вредное воз­действие статического электриче­ства на человека. Основными мера­ми защиты являются: устройство электропроводящих полов или за­земленных зон, помостов и рабочих площадок, заземление ручек две­рей, поручней лестниц, рукояток приборов, машин и аппаратов; обес­печение работающих токопроводящей обувью, антистатическими ха­латами.

7. ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ

Лазер или оптический кванто­вый генератор - это генератор электромагнитного излучения оптического диапазона, осно­ванный на использовании вынуж­денного (стимулированного) из­лучения.

Лазеры благодаря своим уникаль­ным свойствам (высокая направлен­ность луча, когерентность, монохроматичность) находят исключитель­но широкое применение в различ­ных областях промышленности, на­уки, техники, связи, сельском хо­зяйстве, медицине, биологии и др.

В основу классификации лазе­ров положена степень опаснос­ти лазерного излучения для об­служивающего персонала. По этой классификации лазеры раз­делены на 4 класса:

класс 1 (безопасные) - выходное излучение не опасно для глаз; класс II (малоопасные) - опасно для глаз прямое или зеркально отраженное излучение;

класс III (среднеопасные) - опасно для глаз прямое, зеркально, а так­же диффузно отраженное излуче­ние на расстоянии 10 см от отража­ющей поверхности и (или) для кожи прямое или зеркально отраженное излучение;

класс IV (высокоопасные)- опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

В качестве ведущих критериев при оценке степени опасности генери­руемого лазерного излучения при­няты величина мощности (энергии), длина волны, длительность импуль­са и экспозиция облучения.

Предельно допустимые уров­ни, требования к устройству, размещению и безопасной экс­плуатации лазеров регламенти­рованы "Санитарными нормами и правилами устройства и экс­плуатации лазеров" № 2392-81, которые позволяют разрабатывать мероприятия по обеспечению бе­зопасных условий труда при рабо­те с лазерами. Санитарные нормы и правила позволяют определить величины ПДУ для каждого режима работы, участка оптического диа­пазона по специальным формулам и таблицам. Нормируется энерге­тическая экспозиция облучаемых тканей. Для лазерного излучения видимой области спектра для глаз учитывается также и угловой раз­мер источника излучения.

Предельно допустимые уровни облучения дифференцированы с учетом режима работы лазеров -непрерывный режим, моноимпуль­сный, импульсно-периодический.

В зависимости от специфики тех­нологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отра­женного и рассеянного излучения. Энергия излучения лазеров в био­логических объектах(ткань, орган) может претерпевать различные пре­вращения и вызывать органичес­кие изменения в облучаемых тканях (первичные эффекты) и неспеци­фические изменения функциональ­ного характера (вторичные эффек­ты), возникающие в организме в ответ на облучение.

Влияние излучения лазера на орган зрения (от небольших функ­циональных нарушений до полной потери зрения) зависит в основном от длины волны и локализации воз­действия.

При применении лазеров боль­шой мощности и расширении их практического использования воз­росла опасность случайного повреж­дения не только органа зрения, но и кожных покровов и даже внутрен­них органов с дальнейшими изме­нениями в центральной нервной и эндокринной системах.

Основными нормативными пра­вовыми актами при оценке усло­вий труда с оптическими кванто­выми генераторами являются:

"Санитарные нормы и правила устройства и эксплуатации лазе­ров" № 2392-81; методические рекомендации "Гигиена труда при работе с лазерами", утверж­денные МЗ РСФСР 27.04.81 г.;

ГОСТ 24713-81 "Методы измере­ний параметров лазерного излу­чения. Классификация"; ГОСТ 24714-81 "Лазеры. Методы из­мерения параметров излучения. Общие положения"; ГОСТ 12.1.040-83 "Лазерная безопас­ность. Общие положения"; ГОСТ 12.1.031 -81 "Лазеры. Методы дозиметрического контроля ла- зерного излучения".

Предупреждение поражений ла­зерным излучением включает сис­тему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характе­ра.

При использовании лазеров II-III классов в целях исключения об­лучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Экраны и ограждения должны изго­тавливаться из материалов с наи­меньшим коэффициентом отраже­ния, быть огнестойкими и не выде­лять токсических веществ при воз­действии на них лазерного излуче­ния.

Лазеры IV класса опасности раз­мещаются в отдельных изолирован­ных помещениях и обеспечиваются дистанционным управлением их работой.

При размещении в одном поме­щении нескольких лазеров следует исключить возможность взаимного облучения операторов, работающих на различных установках. Не допус­каются в помещения, где размеще­ны лазеры, лица, не имеющие отно­шения к их эксплуатации. Запрещается визуальная юстировка лазе­ров без средств защиты.

Для удаления возможных токси­ческих газов, паров и пыли обору­дуется приточно-вытяжная вентиля­ция с механическим побуждением. Для защиты от шума принимаются соответствующие меры звукоизо­ляции установок, звукопоглощения и др.

К индивидуальным средствам за­щиты, обеспечивающим безопас­ные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, обеспечиваю­щие снижение облучения глаз до ПДУ.

Средства индивидуальной за­щиты применяются только в том случае, когда коллективные средства защиты не позволяют обеспечить требования санитар­ных правил.

8. ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ

Свет является естественным ус­ловием жизни человека, необходи­мым для сохранения здоровья и высокой производительности тру­да, и основанным на работе зри­тельного анализатора, самого тон­кого и универсального органа чувств.

Свет представляет собой ви­димые глазом электромагнитные волны оптического диапазона длиной 380-760 нм, восприни­маемые сетчатой оболочкой зри­тельного анализатора.

В производственных помещениях используется 3 вида освещения:

естественное (источником его яв­ляется солнце), искусственное (ког­да используются только искусствен­ные источники света); совмещен­ное или смешанное (характеризу­ется одновременным сочетанием ес­тественного и искусственного осве­щения).

Совмещенное освещение приме­няется в том случае, когда только естественное освещение не может обеспечить необходимые условия для выполнения производственных операций.

Действующими строительными нормами и правилами предусмотре­ны две системы искусственного ос­вещения: система общего освеще­ния и комбинированного освещения.

Естественное освещение со­здается природными источниками света прямыми солидными лучами и диффузным светом небосвода (от солнечных лучей, рассеянных атмос­ферой). Естественное освещение является биологически наиболее ценным видом освещения, к кото­рому максимально приспособлен глаз человека.

В производственных помещениях используются следующие виды ес­тественного освещения: боковое - через светопроемы (окна) в наруж­ных стенах; верхнее - через свето­вые фонари в перекрытиях; комбинированное - через световые фона­ри и окна.

В зданиях с недостаточным есте­ственным освещением применяют совмещенное освещение - сочета­ние естественного и искусственно­го света. Искусственное освещение в системе совмещенного может функционировать постоянно (в зо­нах с недостаточным естественным освещением) или включаться с на­ступлением сумерек.

Искусственное освещение на промышленных предприятиях осу­ществляется лампами накаливания и газоразрядными лампами, кото­рые являются источниками искус­ственного света.

В производственных помещениях применяются общее и местное ос­вещение. Общее - для освещения всего помещения, местное (в сис­теме комбинированного) - для уве­личения освещения только рабочих поверхностей или отдельных час­тей оборудования.

Применение не только местно­го освещения не допускается.

С точки зрения гигиены труда основной светотехнической ха­рактеристикой является осве­щенность (Е), которая представ­ляет собой распределение све­тового потока (Ф) на поверхно­сти площадью (S) и может быть выражена формулой Е = Ф/S.

Световой поток (Ф) - мощность лучистой энергии, оцениваемая по производимому ею зрительному ощущению. Измеряется в люменах (лм).

В физиологии зрительного вос­приятия важное значение придает­ся не падающему потоку, а уровню яркости освещаемых производ­ственных и других объектов, кото­рая отражается от освещаемой поверхности в направлении глаза. Зрительное восприятие определя­ется не освещенностью, а ярко­стью, под которой понимают харак­теристику светящихся тел, равную отношению силы света в каком-либо направлении к площади про­екции светящейся поверхности на

плоскость, перпендикулярную к этому направлению. Яркость изме­ряется в нитах (нт). Яркость осве­щенных поверхностей зависит от их световых свойств, степени ос­вещенности и угла, под которым поверхность рассматривается.

Сила света - световой поток, рас­пространяющийся внутри телесно­го угла, равного 1 стерадианту. Еди­ница силы света - кандела (кд).

Световой поток, падающий на поверхность, частично отражается, поглощается или пропускается сквозь освещаемое тело. Поэтому световые свойства освещаемой поверхности характеризуются также следующими коэффици­ентами:

коэффициент отражения - от­ношение отраженного телом свето­вого потока к падающему;

коэффициент пропускания - от­ношение светового потока, прошед­шего через среду, к падающему;

коэффициент поглощения - от­ношение поглощенного телом све­тового потока к падающему.

Необходимые уровни освещен­ности нормируются в соответ­ствии со СНиП 23-05-95 "Есте­ственное и искусственное осве­щение" в зависимости от точно­сти выполняемых производ­ственных операций, световых свойств рабочей поверхности и рассматриваемой детали, сис­темы освещения".

К гигиеническим требованиям, отражающим качество произ­водственного освещения, отно­сятся:

равномерное распределение яр­костей в поле зрения и ограничение теней;

ограничение прямой и отражен­ной блесткости;

ограничение или устранение ко­лебаний светового потока.

Равномерное распределение яр­кости в поле зрения имеет важное значение для поддержания рабо­тоспособности человека. Если в поле зрения постоянно находятся повер­хности, значительно отличающиеся по яркости (освещенности), то при переводе взгляда с ярко- на слабо­освещенную поверхность глаз вы­нужден переадаптироваться. Час­тая переадаптация ведет к разви­тию утомления зрения и затрудняет выполнение производственных опе­раций.

Степень неравномерности опре­деляется коэффициентом неравно­мерности - отношением максималь­ной освещенности к минимальной. Чем выше точность работ, тем мень­ше должен быть коэффициент не­равномерности.

Чрезмерная слепящая яркость (блесткость) - свойство светящих­ся поверхностей с повышенной яр­костью нарушать условия комфор­тного зрения, ухудшать контраст­ную чувствительность или оказы­вать одновременно оба эти дей­ствия.

Светильники - источники света, заключенные в арматуру, - пред­назначены для правильного распре­деления светового потока и защиты глаз от чрезмерной яркости источ­ника света. Арматура защищает источник света от механических повреждений, а также дыма, пыли, копоти, влаги, обеспечивает креп­ление и подключение к источнику питания.

По светораспределению светиль­ники подразделяются на светиль­ники прямого, рассеянного и отра­женного света. Светильники прямо­го света более 80% светового пото­ка направляют в нижнюю полусферу за счет внутренней отражающей эмалевой поверхности. Светильни­ки рассеянного света излучают све­товой поток в обе полусферы: одни - 40-60% светового потока вниз, дру­гие - 60-80% вверх. Светильники отраженного света более 80% све­тового потока направляют вверх на потолок, а отражаемый от него свет направляется вниз в рабочую зону.

Для защиты глаз от блесткости светящейся поверхности ламп слу­жит защитный угол светильника -угол, образованный горизонталью

от поверхности лампы (края светя­щейся нити) и линией, проходящей через край арматуры.

Светильники для люминисцентных ламп в основном имеют прямое све-тораспределение. Мерой защиты от прямой блесткости служат защит­ный угол, экранирующие решетки, рассеиватели из прозрачной плас­тмассы или стекла.

С помощью соответствующего размещения светильников в объе­ме рабочего помещения создается система освещения. Общее осве­щение может быть равномерным или локализованным. Общее размеще­ние светильников (в прямоуголь­ном или шахматном порядке) для создания рациональной освещен­ности производят при выполнении однотипных работ по всему поме­щению, при большой плотности рабочих мест (сборочные цеха при отсутствии конвейера, деревоотделочные и др.) Общее локализован­ное освещение предусматривается для обеспечения на ряде рабочих мест освещенности в заданной плос­кости (термическая печь, кузнечный молот и др.), когда около каждого из них устанавливается дополни­тельный светильник (например, кососвет), а также при выполнении на участках цеха различных по харак­теру работ или при наличии затеня­ющего оборудования.

Местное освещение предназна­чено для освещения рабочей повер­хности и может быть стационарным и переносным, для него чаще при­меняются лампы накаливания, так как люминисцентные лампы могут вызвать стробоскопический эф­фект.

Аварийное освещение устраи­вается в производственных поме­щениях и на открытой территории для временного продолжения ра­бот в случае аварийного отключе­ния рабочего освещения (общей сети). Оно должно обеспечивать не менее 5% освещенности от норми­руемой при системе общего осве­щения.

Литература:

    «Анализ несчастных случаев на производстве. Охрана труда. практикум» 98/2 М.

    Евтушенко Н.Г., Кузьмин А.П. «Безопасность жизнедеятельности в условиях чрезвычайных ситуаций» М. 94.