Використання комутаційних функцій при страхуванні на чисте дожиття
1
Вступ
Страхування як економічне явище існує впродовж декількох тисячоліть. Спочатку головною формою страхування була страхова взаємодопомога. Вона носила характер одноразових угод про взаємодопомогу в області торгівлі. У подальшому взаємне страхування набуває більш досконалої форми, тобто воно базується на основі регулярних платежів, які призводять до акумуляції грошових засобів і створення страхового фонду. Пізніше починається процес диференціації страхування.
Сьогодні інтенсивно розвиваються нові види та підвиди, форми та варіанти страхування. Характерним є інтернаціоналізація страхування та загострення боротьби за зовнішні страхові ринки.
У сучасному підприємництві та бізнесі життєво необхідно оцінювати ризики, пов’язані з випадковими подіями. Кваліфікацію для цього має так званий актуарій – фахівець з даних питань. У багатьох країнах актуарії активно працюють і в області фінансів та інвестицій.
Від терміну актуарій отримала назву актуарна математика, предметом якої є опис фінансових операцій, що носять ймовірносний характер.
До предмету актуарна математика відносяться нетто-премії для елементарних видів страхування, які сплачуються поетапно, тим самим дозволяючи страхувальнику поступово виконувати свої зобов’язання.
Використання комутаційних функцій в актуарних розрахунках
З метою спрощення актуарних розрахунків на практиці часто використовують спеціальні функції, які називаються комутаційними. Для них складаються спеціальні таблиці, які є різними для чоловіків та жінок, а також для різних процентних ставок. Вони приведені у кінці курсової робити.
Перша з комутаційних функцій Dx, яка визначається за формулою:
Зміст цієї функції заключається в тому, що якщо при народженні групи дітей чисельність l>0> їх страхують на дожиття з умовою виплати у певному віці одиничної страхової суми, то очікувана поточна вартість суми страхових виплат запишеться у вигляді:
За допомогою таблиць смертності розраховують значення для різних процентних ставок. Потім, вже не звертаючись до таблиць смертності, використовують готові значення D>x> для актуарних розрахунків.
Приклад використання
Немовля (хлопчик) застраховане на дожиття. Йому передбачається виплатити суму 15000 при досягненні ним повноліття, Визначити:
очікувану поточну вартість суми страхових виплат
величину внеску.
Приймаємо, що і=0.065.
1)
2)
Отже, щоб у 18 років хлопчик отримав 15000 грн., при його народженні слід внести 4694,31 грн.
Для уникнення проміжних розрахунків по страхуванню ренти використовують іншу комутаційну функцію:
Тоді формули для звичайної та приведеної рент запишуться:
ä
Приклад використання.
Визначити вартість довічної ренти з виплатою 5000 наприкінці кожного року для чоловіка віком 60 років. Річна відсоткова ставка 0.065.
Тоді вартість ренти складе:
Для спрощення розрахунків по страхуванню життя на випадок смерті використовують наступні комутаційні функції:
Отже, очікувана поточна вартість виплат при страхуванні життя на років, яка обчислюється наступним чином:
при використанні комутаційних функцій запишеться:
Приклад використання.
Чоловік у віці 40 років придбав поліс на страхування життя на термін 10 років. За цим полісом, у разі його смерті, його діти отримають 50000 грн. Приймемо, що ставка доходності і=0.065. Визначити вартість полісу.
Таким чином, на 1грн. виплати складуть 3 коп. Тоді вартість полісу становитиме:
Нетто-премії для елементарних видів страхування
Довгострокові контракти по страхуванню життя у більшості випадків оплачуються поетапно (щорічно, щоквартально, щомісячно). При періодичній сплаті внесків страхувальник виконує свої зобов’язання поступово.
Нетто-премії для елементарних видів страхування бувають таких видів:
На чисте дожиття.
Страхування рент.
Страхування рент на випадок смерті.
Нетто-премії змішаного страхування життя.
Задача 1
Визначити величину річних внесків при страхуванні на чисте дожиття протягом 10 років чоловікові віком 45 років на суму 10000грн. при річній ставці і = 0,06.
Тоді величина річних внесків
Задача 2
За умовою попередньої задачі річні внески сплачуються протягом лише 5 років.
Отже, величина річних внесків зі скороченням строку їх сплати у два рази збільшилася на 245грн. або 1,03 рази.
Задача 3
Визначити величину квартального внеску для жінки віком 55 років при страхуванні на чисте дожиття протягом 8 років на суму 15000грн., q=4.
Задача 4
Розрахувати величину щомісячного внеску для хлопців віком 18 років при страхуванні на чисте дожиття протягом 10 років на суму 50000 грн., q=12, i=0,07.
;
;
;
.
Задача 5
Жінка у віці 35 років уклала договір страхування пенсії зі страховою компанією, згідно з яким довічно буде виплачуватися пенсія в розмірі 10000 грн., починаючи з 55 років. Виплати згідно договору будуть проводитись щорічно на початку року. Жінка повинна сплачувати внески, починаючи з 35 до 55 років, i=0,65.
Задача 6
За умовою попередньої задачі чоловік у віці 35 років уклав такій самий договір зі страховою компанією, i=0,065.
Таким чином, за інших рівних умов чоловікові доведеться сплачувати на 712,44 грн. або у 1,26 більше.
Задача 7
Чоловік у віці 38 років уклав договір страхування довічної ренти при досягненні віку 60 років, коли довічно буде виплачуватися пенсія у розмірі 5000 грн. Внески ним згідно договору сплачуються на протязі 10 років. Визначити величину щорічного внеску, і=0,075.
Для цього використаємо формулу, за якою визначимо величину щорічного внеску, якщо період сплати внесків менший за термін відстрочки:
Задача 8
Жінка віком 45 років уклала договір термінової ренти, згідно з яким, починаючи з 55 років до 65 років буде отримувати пенсію у розмірі 3250 грн. щорічно, сплачуючи внески, починаючи з 45 до 55 років щорічно на початку кожного року, і=0,055. Для обчислення внеску страхувальника скористаємося наступною формулою:
Задача 9
Студент юридичного факультету КПІ віком 20 років уклав довічний договір страхування з умовою виплати страхових внесків щороку. Страхова сума згідно договору рівна 10000 грн., і=0,075. Розрахувати величину щорічного внеску за допомогою наступної формули:
Задача 10
За умовою попередньої задачі припустимо, що період сплати внесків при довічному страхуванні обмежений до віку 45 років. Коефіцієнт розстрочки буде мати вигляд:
Тоді внесок при обмеженому періоді сплати буде обчислюватися за формулою:
Отже, сплачуючи щорічно 57,43грн. з 18 до 43 років, цей отримає 10000 грн. у випадку своєї смерті.
Висновки
При виконанні курсової роботи ми пересвідчились що комутаційні функції використовуються для розрахунку нетто-премій для елементарних видів страхування, зокрема страхування на чисте дожиття, страхування рент та страхування рент на випадок смерті.
При страхуванні на чисте дожиття, коли вичікувальний період відсутній і сплата страхової премії відбувається протягом усього часу дії договору строк страхування на певну кількість років рівний початку періоду сплати премій. Іншими словами величина зносу з одиничної страхової суми рівна одночасній вартості страхування, поділеній на коефіцієнт розстрочки (виплат).
Різновидом страхування на дожиття є страхування рент, коли передбачений ряд виплат протягом певного періоду, а також довічно. Довічно виплати сплачуються за умови дожиття страхувальником до віку, коли починаються виплати.
У страхуванні на виплату смерті відсутній вичікувальний період. Це пов’язане з тим, що страховим випадком при даному виді страхування є смерть застрахованого.
Комбінація цих трьох видів страхування являється змішаним страхуванням життя. Премія при такому страхуванні рівна сумі премій на дожиття та одноразових премій страхування на випадок смерті.