Гражданская оборона: устойчивость лаборатории к воздействию Электромагнитного Импульса(ЭМИ)
4 гражданская оборона
Необходимо оценить устойчивость лаборатории физики твердого тела к воздействию электромагнитного импульса (ЭМИ) ядерного взрыва и предложить мероприятия по повышению устойчивости.
4.1 Основные положения
Одной из основных задач ГО является проведение мероприятий, направленных на повышение устойчивости работы объектов в условиях чрезвычайных ситуаций (ЧС) мирного и военного времени.
Под устойчивостью работы промышленного объекта понимают способность его в условиях ЧС выпускать продукцию в запланированных объеме и номенклатуре, а при получении слабых и средних разрушений или нарушении связей по кооперации и поставкам восстанавливать производство в минимальные сроки.
Под устойчивостью работы объектов, непосредственно не производящих материальные ценности, понимают способность их выполнять свои функции в условиях ЧС.
На устойчивость работы объектов народного хозяйства в ЧС влияют следующие факторы [15]:
надежность защиты рабочих и служащих от воздействия чрезвычайных событий;
способность инженерно-технического комплекса объекта противостоять в определенной степени ударной волне, световому излучению и радиации;
защищенность объекта от вторичных поражающих факторов (пожаров, взрывов, затоплений, заражений сильнодействующими ядовитыми веществами);
надежность системы снабжения объекта всем необходимым для производства продукции (сырьем, топливом, электроэнергией, водой и т.п.);
устойчивость и непрерывность управления производством и ГО;
подготовленность объекта к ведению спасательных и других неотложных работ и работ по восстановлению нарушенного производства.
Исследование устойчивости работы объекта народного хозяйства заключается во всестороннем изучении условий, которые могут сложиться в ЧС, и в определении их влияния на производственную деятельность.
Цель исследования состоит в том, чтобы выявить уязвимые места в работе объекта в ЧС и выработать наиболее эффективные рекомендации, направленные на повышение его устойчивости. В дальнейшем эти рекомендации включаются в план мероприятий по повышению устойчивости работы объекта, который и реализуется.
Исследование устойчивости предприятий проводится силами инженерно-технического персонала с привлечением специалистов научно-исследовательских и проектных организаций, связанных с данным предприятием. Весь процесс планирования и проведения исследования можно разделить на три этапа [15]:
Подготовительный этап.
На первом этапе разрабатываются руководящие документы, определяется состав участников исследования и организуется их подготовка.
Оценка устойчивости работы объекта в условиях ЧС.
На втором этапе проводится непосредственно исследование устойчивости работы объекта в ЧС.
Разработка мероприятий, повышающих устойчивость работы объекта.
На третьем этапе подводятся итоги проведенных исследований. Группы специалистов по результатам исследований подготавливают доклады, в которых излагаются выводы и предложения по защите рабочих и служащих и повышению устойчивости оцениваемых элементов производства.
На каждом предприятии, исходя из его назначения, размещения и специфики производства, мероприятия по повышению устойчивости могут быть различными.
На образование ЭМИ расходуется небольшая часть ядерной энергии, однако, он способен вызывать мощные импульсы токов и напряжений в проводах и кабелях воздушных и подземных линий связи, сигнализации, управления, электропередачи, в антеннах радиостанций и т.п.
Воздействие ЭМИ может привести к сгоранию чувствительных электронных и электрических элементов, связанных с большими антеннами или открытыми проводами, а также к серьезным нарушениям в цифровых и контрольных устройствах, обычно без необратимых изменений.
Особенностью ЭМИ как поражающего фактора является его способность распространяться на десятки и сотни километров в окружающей среде и по различным коммуникациям. Поэтому ЭМИ может оказать воздействие там, где ударная волна, световое излучение и проникающая радиация теряют свое значение как поражающие факторы.
При наземных и низких воздушных взрывах в зоне, радиусом в несколько километров от места взрыва, в линиях связи и электроснабжения возникают напряжения, которые могут вызвать пробой изоляции проводов и кабелей относительно земли, а также пробой изоляции элементов аппаратуры и устройств, подключенных к воздушным и подземным линиям.
Степень повреждения зависит в основном от амплитуды наведенного импульса напряжения или тока и электрической прочности оборудования.
Главная задача защитных устройств от ЭМИ — исключить доступ наведенных токов к чувствительным узлам и элементам защищаемого оборудования. Проблема защиты от ЭМИ усложняется тем, что импульс протекает примерно в 50 раз быстрее, чем, например, разряд молнии, и поэтому простые газовые разрядники в данном случае малоэффективны.
В каждом конкретном случае должны быть найдены наиболее эффективные и экономически целесообразные методы защиты электронной аппаратуры и крупных разветвленных электротехнических систем. Рассмотрим основные методы защиты [15]:
Экраны и защитные устройства.
Металлические экраны отражают электромагнитные волны и гасят высокочастотную энергию. Через систему заземления ток, наведенный ЭМИ, стекает в землю, не причиняя вреда электронной аппаратуре, находящейся внутри металлических шкафов или коробов.
Защита кабелей.
Соединительные кабели для защиты прокладывают в земляных траншеях под цементным или бетонированным полом зданий либо заключают в стальные короба, которые заземляют. Можно размещать кабеля и на поверхности поля, закрыв их заземленными швеллерами.
Надежность повышается, если кабель разветвляется и подводится к нескольким шкафам с разделительными трансформаторами. В этом случае изолированные участки сети обладают большим сопротивлением изоляции и малой емкостью проводов относительно земли. Также целесообразно применять фильтры от высокочастотных помех.
Защитные разрядники и плавкие предохранители.
Основные функции защитного разрядника — разомкнуть линию или отвести энергию для предотвращения повреждения в защищаемом оборудовании. Устанавливается на входы и выходы аппаратуры.
Для защиты аппаратуры могут быть рекомендованы плавкие предохранители и защитные входные приспособления, которые представляют собой различные релейные или электронные устройства, реагирующие на превышение тока или напряжения в цепи.
Грозозащитные устройства.
Обеспечивают «стекание» большого разряда в землю без повреждения изоляционных элементов линий.
Использование симметричных двухпроводных линий.
Защита периферийных устройств.
Указанные способы и средства защиты должны внедряться во все виды электротехнической и радиоэлектронной аппаратуры с учетом характера поражающего действия электромагнитных излучений ядерного взрыва для обеспечения надежности работы предприятий в условиях ЧС мирного и военного времени.
4.2 Исходные данные
Оценить устойчивость работы лаборатории физики твердого тела к воздействию ЭМИ ядерного взрыва по исходным данным, занесенным в таблицу 4.1.
Объект располагается на расстоянии R = 5 км от вероятного ядерного взрыва. Ожидаемая мощность ядерного боеприпаса q = 1000 кт, взрыв наземный. Элементы системы, подверженные воздействию ЭМИ:
1. Питание электродвигателей: напряжения 380 В и 6000 В по подземным неэкранированным кабелям l>1 >= 75 м. Кабели имеют вертикальное отклонение к электродвигателям высотой l>1 >= 1,5 м. Допустимые колебания напряжения сети ±5%, коэффициент экранирования кабеля h = 2.
2. Система автоматического управления энергоблока состоит из устройства ввода, ЭВМ, блока управления исполнительными органами, разводящей сети управления дополнительными агрегатами. Устройство ввода, ЭВМ, блок управления выполнены на микросхемах, имеющих токопроводящие элементы высотой l>3> = 0,05 м. Рабочее напряжение микросхем 5 В. Питание от общей сети напряжения 220 В через трансформатор. Допустимые колебания напряжения сети ±5%. Разводящая сеть управления имеет горизонтальную линию l>2> = 50 м и вертикальные ответвления высотой l>2> = 2 м к блокам управления. Рабочее напряжение питания 220В. Допустимые колебания напряжения сети ±5%, коэффициент экранирования разводящей сети h = 2.
Таблица 4.1 — Исходные данные по оценке воздействия ЭМИ на устойчивость объекта
Расстояние, |
Мощность, |
Длина, м |
Допуск, |
|
Км |
кт |
l>1> |
l>2> |
% |
5 |
1000 |
75 |
50 |
5 |
4.3 Исследование устойчивости объекта к воздействию ЭМИ
1. Рассчитаем ожидаемые на объекте максимальные значения вертикальной E>В> и горизонтальной E>Г> составляющих напряженности электрического поля [16]:
, В/м, (4.1)
, В/м, (4.2)
где R — расстояние объекта от вероятного ядерного взрыва;
q — ожидаемая мощность ядерного боеприпаса.
В/м,
В/м.
2. Определим максимальные ожидаемые напряжения наводок [16]:
а) в системе электропитания:
, В (4.3)
, В (4.4)
где l>1> — высота вертикального отклонения кабеля к электродвигателям,
L>1> — длина подземного экранированного кабеля;
h — коэффициент экранирования кабеля.
В
В
б) в разводящей сети управления:
, В (4.5)
, В (4.6)
где l>2> — высота вертикального ответвления разводящей сети управления к блокам управления,
L>2> — длина горизонтальной линии разводящей сети управления;
h — коэффициент экранирования кабеля.
В
В
в) в устройстве ввода, ЭВМ, блоке управления:
, В (4.7)
где l>3> — высота токопроводящих элементов;
h — коэффициент экранирования кабеля.
В
3. Определим допустимые максимальные напряжения наводок [16]:
а) в сети питания:
, В (4.8)
где U — напряжение питания электродвигателей;
В
В
б) в разводящей сети управления:
В
в) в устройстве ввода, ЭВМ, блоке управления:
В
4. Рассчитаем коэффициент безопасности [16]:
, дБ (4.9)
где U>Д> — допустимое максимальное напряжение наводок в устройстве ввода, ЭВМ, блоке управления,
U>Э> — ожидаемое максимальное напряжение наводок в устройстве ввода, ЭВМ, блоке управления.
дБ
Сведем полученные данные в таблицу (см. таблицу 4.2).
Таблица 4.2 — Результаты оценки устойчивости объекта к воздействию ЭМИ
Элементы системы |
Допустимые напряжения сети, В |
Напряженность электрических полей, В/м |
Наводимые напряжения в токопроводящих элементах, В |
||
Е>В> |
Е>Г> |
U>B> |
U>Г> |
||
Электроснабжение Электродвигателей |
399 6300 |
1831,0 1831,0 |
3,7 3,7 |
1373,3 1373,3 |
137,3 137,3 |
Устройство ввода, ЭВМ, блок управления |
5,25 |
1831,0 |
3,7 |
45,8 |
— |
Разводящая сеть управл. Исполнит. агрегатами |
231 |
1831,0 |
3,7 |
1831,0 |
91,6 |
Коэффициент безопасности К = — 18,81 дБ << 40 дБ. |
4.4 Выводы по результатам исследования
Данный объект может оказаться в зоне воздействия ЭМИ наземного ядерного взрыва. Возможен выход из строя элементов объекта от величины вертикальной составляющей электрического поля. Наиболее уязвимыми элементами объекта являются: устройство ввода, ЭВМ, блок управления исполнительными агрегатами. Объект не устойчив к воздействию ЭМИ, так как коэффициент безопасности значительно меньше удовлетворительного значения, составляющего К³40 дБ.
4.5 Предложения по повышению устойчивости объекта
Для повышения устойчивости работы объекта к воздействию ЭМИ ядерного взрыва необходимо провести следующие мероприятия:
кабель питания двигателей экранировать, поместив в стальные трубы, а на входах двигателей установить быстродействующие отключающие устройства (разрядники);
разводящую сеть блока управления исполнительными агрегатами проложить в стальных трубах, а пульт управления и блоки управления закрыть заземленными экранами, экраны заземлить;
на входах и выходах пульта управления и блоков управления установить быстродействующие отключающие устройства (разрядники, плавкие предохранители).