Реакции окисления в промышленном органическом и нефтехимическом синтезе
- 1 -
Реакции окисления в промышленном органическом и нефтехимическом синтезе
Окисление органических соединений занимает важное место в промышленном органическом и нефтехимическом синтезе. Окисляют парафиновые углеводороды, нафтены, арены, олефины, диены, спирты, альдегиды, алкины, меркаптаны, амины и др. органические соединения. В качестве окислителей используют O>2>, H>2>O>2>, ROOH, O>3>, N>2>O, неорганические окислители, включая Cl>2>, Br>2>, Cl>2>O и др.
Процессы окисления по разным признакам можно классифицировать следующим образом:
парциальное окисление;
глубокое окисление (обычно до СО>2> и Н>2>О);
гомогенное газофазное окисление – обычно радикально-цепное автоокисление или инициированное окисление, процессы горения;
гомогенное гетерофазное (жидкофазное) окисление;
гетерогенно-каталитическое окисление.
Гомогенное жидкофазное окисление делится на радикально-цепное автоокисление (или инициированное окисление) и каталитическое окисление.
Приведем типичные реакции каталитического жидкофазного и гетерогенного окисления органических соединений.
Типичные окислители и реакции
Окисление кислородом
а) Радикально-цепное жидкофазное окисление алкилароматических соединений (катализ комплексами металлов)
б) "Мерокс"-процесс
в) "Вакер"-процесс (окисление олефинов)
г) Реакция Моисеева (синтез винилацетата)
д) окислительное карбонилирование метанола
е) окислительная димеризация
Реакция Глязера-Залькинда:
Реакция Моритани-Фудживары:
ж) окислительное хлорирование
Окисление пероксидом водорода и гидропероксидами
а) Реакция Прилежаева
б) Эпоксидирование олефинов
в) Окисление аренов и фенолов
Pc* – замещенные фталоцианины
г) "Халкон"-процесс
Окисление О>2> в гетерогенном катализе
а) окисление спиртов
б) окисление ароматических соединений
в) окисление алканов (окислительное дегидрирование)
г) окисление олефинов
д) окислительный аммонолиз парафинов и олефинов
е) реакция Моисеева в паровой фазе
ж) синтез аллилацетата
з) окислительная димеризация метана
и) окислительное хлорирование этилена
Появились и новые окислители, например, закись азота N2O. Бензол окисляется этим окислителем на цеолитах ZSM-5, содержащих железо, при 350 – 400оС. Селективность ~100%, конверсия 8 – 13%.
Недавно (в 2002 г) установлено (Г.И.Панов), что N2O в жидкой фазе без катализатора при давлении 10 атм и температурах 140 – 250оС окисляет олефины до кетонов с селективностью > 98%.
Некоторые процессы, механизмы и кинетические модели
"Вакер"-процесс. Реакция окисления олефинов до карбонильных соединений была открыта практически одновременно в Германии (группа доктора Юргена Смидта в фирме "Consortium für Electrochemie") и И.И.Моисеевым, М.Н.Варгафтиком и Я.К.Сыркиным в СССР (МИТХТ им. М.В.Ломоносова) в 1957 – 1959 гг. Реакция протекает в воде или водно-органических растворах комплексов Pd(II) и Cu(II) при атмосферном давлении и температурах 70 – 95оС, например, синтез ацетальдегида:
(1)
Реакция (1) вызвала интерес у промышленных фирм, и уже в 1962 году фирма "Wacker Chemie" построила производство альдегида по этой реакции. В промышленных условиях используют давление 10 – 13 атм и температуру 110 – 120оС. Процесс (1) складывается из трех макростадий (2 – 4):
(2)
(3)
(4)
Таким образом, PdCl>2> катализирует окисление этилена окислителем CuCl>2> (стадии (2) и (3)), а CuCl>2> катализирует окисление Pd0 кислородом (стадии 3, 4). Система PdCl>2>-CuCl>2> является полифункциональным катализатором брутто-процесса (1). Интересно, что молекула воды также катализирует брутто-реакцию и является непременным участником процесса в этой каталитической системе. Поскольку скорость окисления Cu(I) кислородом достаточно велика, стационарность процесса обеспечивается равенством скоростей реакций (2) и (3). В условиях промышленного процесса скорость реакции (3) обеспечивает отсутствие Pd0 в форме металлической фазы, и скорость реакции (1) в определенных пределах не зависит от [CuCl>2>]. Вместо CuCl>2> можно использовать другие промежуточные окислители, например, п-бензохинон, концентрация которого при определенном избытке также не влияет на скорость образования ацетальдегида. Эту систему и использовали для построения кинетической модели и изучения механизма реакции. Очевидно, таким образом, что главные события, приводящие к очень интересному превращению этилена с участием H>2>O, происходят в реакции (2).
Кинетическое уравнение для реакции (2) в присутствии п-бензохинона (Q) было получено в закрытой системе без газовой фазы (И.И.Моисеев и др.) и по поглощению этилена в двухфазном реакторе полного смешения волюмометрическим методом (П.Генри). В области концентраций PdCl>2> до 0.02 М при постоянной ионной силе (I = 1 – 3) в системе NaCl – LiClO>4> – HCl – HClO>4> = Const Pd(II) находится преимущественно в форме PdCl>4>2– , и закомплексованность Pd(II) этиленом не существенна. Скорость реакции (2) или реакции (5)
(5)
описывается уравнением (6)
(6)
Из уравнения (6) следует, что процесс протекает с лимитирующей стадией и что в стадиях до лимитирующей выделяются ион Н+ и два иона Cl– при взаимодействии PdCl>4>2– и C>2>H>4>. Для выяснения вопроса о том, из какой частицы выделяется Н+, провели опыты с меченым этиленом (C>2>D>4>) в H>2>O. Оказалось, что ацетальдегид содержит 4 атома D (CD>3>CDO) и, таким образом, Н+ может выделяться только из молекулы H>2>O. Схема механизма, соответствующая уравнению (6) и подтвержденная независимым исследованием равновесий в этой системе, включает стадии
(7)
(8)
(9)
(10)
(11)
(12)
(13)
Механизм лимитирующей стадии (10) и механизм стадии (11) до сих пор являются предметом дискуссий.
Для расчетов промышленного реактора в случае системы PdCl>2>-CuCl>2> в условиях постоянной концентрации HCl по длине трубчатого реактора (труба в трубе) используют несколько измененное уравнение, найденное экспериментально на основе уравнения (6). Скорость накопления ацетальдегида (САА) или исчезновения этилена вдоль трубы длиной l описывают уравнением
. (14)
где d – внутренний диаметр трубы, м; Vсм – объем смеси этилена и раствора, поступающего в трубу, Vсм 0.5 м3/сек; [С>2>Н>4>]l – концентрация этилена вдоль трубы в молях на м3, рассчитываемая по найденной зависимости [С2Н4]l = f (T, P)
,
где , см – плотность смеси в кг/м3; , P0 – общее давление смеси, P – понижение давления по длине трубы; l – длина трубы.
Синтез винилацетата (реакция Моисеева). Реакция окислительной этерификации или окислительного ацетоксилирования олефинов
(15)
была открыта в МИТХТ им. Ломоносова в 1960 г. Реакция осуществляется в растворах солей PdCl>2>-CuCl>2> и Cu(OAc)>2> в уксусной кислоте в присутствии NaOAc. Температура процесса 110 – 130оС и давление 3.0 – 4.0 МПа. Селективность по этилену – 83%. Кинетическое уравнение получено Моисеевым и Беловым в системе, не содержащей CuCl>2> (16)
(16)
в предположении, что в условиях квадратичного торможения ацетатом натрия весь Pd(II) находится в форме комплекса Na>2>Pd(OAc)>4>. В работе П.Генри приведена другая форма уравнения (16) в предположении, что активной формой Pd(II) является димер Na>2>Pd>2>(OAc)>6>, концентрация которого проходит через максимум по [NaOAc]
(17)
Процесс синтеза винилацетата по реакции (15) протекает в рамках механизма, аналогичного "Вакер"-процессу. Предполагается превращение -комплекса Pd(II) в -палладийорганическое соединение под действием OAc– из раствора, а распад полученного интермедиата включает стадию -элиминирования ~PdH
, (18)
где [Pd] – мономерный или димерный комплекс Pd(II). Окислением H-[Pd] и заканчивается каталитический цикл.
Фирмы Hoechst и др. разработали для реакции (15) гетерогенный катализатор, содержащий соли Pd(II), Au(III) и KOAc на Al>2>O>3>. Процесс протекает при 175 – 200оС и давлении 0.5 – 1.0 МПа с высокой селективностью: 94% по этилену и 98% по уксусной кислоте. Состояние Pd(II) в условиях процесса и роль соединений золота пока не ясны.
Халкон-процесс. Эпоксидирование олефинов гидропероксидами осуществляется в промышленном варианте в растворах комплексов Mo(VI). В качестве ROOH используют 2-этилфенилгидропероксид (гидропероксид этилбензола, ГПЭБ), гидропероксид кумила (ГПК) и третбутилгидропероксид (ТБГП). В случае ГПЭБ сопряженно с пропиленоксидом получают стирол:
(18)
(19)
Скорость реакции (18) описывается уравнением (20)
(20)
где FMo = 1 + KГПЭБ[ГПЭБ] + KМФК[МФК] + KОП[ОП] + KH3O[H3O] есть закомплексованность катализатора, МФК – метилфенилкарбинол, ОП – пропиленоксид. Ki – константы равновесия образования соответствующих комплексов Mo. Как видно из уравнения (20), процесс протекает с лимитирующей стадией, переходное состояние которой включает ГПЭБ, Mo(VI) и пропилен. Показано, что активным катализатором является пропиленгликолятный комплекс Mo(VI), реакция которого с ГПЭБ и C3H6 приводит к ОП.
Мерокс-процесс. Реакция окислительной димеризации меркаптанов
(21)
является основой процесса демеркаптанизации природного газа, попутных газов и нефтяных фракций, разработанного фирмой UOP. В водных растворах комплексов Co(II) (Pc*Co, Pc* – замещенный сульфофталоцианин) в присутствии NaOH происходит процесс образования радикалов RS·, димеризация которых дает RS-SR.
Образующиеся Co(III) и H>2>O>2> также окисляют RSH до RS-SR, и в результате получается реакция (21). Нерастворимый дисульфид отделяется от воды, а водный раствор NaOH с катализатором направляется на экстракцию RSH из газа и нефти.