Магнитные и электрические свойства сплавов Co1-xNixTe, подвергнутых термобарическому воздействию

МАГНИТНЫЕ И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СПЛАВОВ Co>1->>x>Ni>x>Te, ПОДВЕРГНУТЫХ ТЕРМОБАРИЧЕСКОМУ ВОЗДЕЙСТВИЮ

Введение

В [1] было показано, что в системе Co>1->>x>Ni>x>Te (0 ≤ x ≤ 1) при закалке от температур, близких к температуре солидуса, образуется непрерывный ряд твердых растворов с никель-арсенидной структурой.

Однако образцы, синтезированные в вакуумированных кварцевых ампулах, были сильно пористыми.

Для получения компактных образцов, необходимых для измерения их плотности, микротвердости, удельного электросопротивления и магнитных свойств, предварительно синтезированные сплавы растирались в порошок и подвергались термобарическому воздействию в аппаратах высокого давления (P ~ 7,0 ГПа, T ~ 1270 K) в течение 30-60 с с последующей закалкой.

Слитки, полученные с применением такой методики, не содержали видимых трещин и пор, сохраняли металлический блеск.

Приготовленные таким способом образцы использовали при измерениях плотности и микротвердости сплавов системы [2], а также их удельной намагниченности и электросопротивления, результаты исследования которых изложены в данном сообщении.

Методика эксперимента

Измерения удельной намагниченности сплавов системы Co>1->>x>Ni>x>Te (0 ≤ x ≤ 1), подвергнутых термобарическому воздействию, выполнены на порошковых образцах методом Фарадея в области температур 80-1270 K в поле H = 0,86 Т. Исследования температурной зависимости удельного электросопротивления выполнены четырехзондовым методом на образцах в виде таблеток диаметром 12 мм и высотой 6-7 мм в температурном интервале 77-730 K.

Экспериментальные результаты и их обсуждение

Рисунок 1 – Температурная зависимость удельной намагниченности сплавов системы Co>1–>>x>Ni>x>Te составов x = 0–0,4, подвергнутых термобарическому воздействию (P ~ 7,0 ГПа, T ~ 1270 K).

–○– - нагрев образца;

–●– - охлаждение; пунктир - экстраполяция.

На рис.1 представлены результаты исследования температурной зависимости удельной намагниченности сплавов системы Co>1->>x>Ni>x>Te составов x = 0-0,4, подвергнутых термобарическому воздействию. Характер этих зависимостей существенным образом отличается от наблюдаемого для быстрозакаленных сплавов таких же составов [3]. Отличие состоит в том, что их величины в области температур 77-500 K значительно ниже величин удельной намагниченности быстрозакаленных сплавов. Кроме того, величины удельной намагниченности каждого образца указанных составов в данной температурной области остаются практически постоянными. Дальнейший нагрев от ~ 500 K приводит к резкому возрастанию удельной намагниченности, после которого ход зависимостей σ (T) становится практически аналогичным ходу, характерному для быстрозакаленных сплавов. Температура исчезновения магнитного упорядочения сплавов составов x = 0-0,3, подвергнутых термобарическому воздействию, практически совпадает с таковой быстрозакаленных сплавов тех же составов. При охлаждении сплавов обратный ход зависимости σ (T) сплавов, подвергнутых термобарическому воздействию, по виду схож с температурными зависимостями удельной намагниченности, полученных при нагреве быстрозакаленных сплавов.

Поведение намагниченности сплавов системы Co>1->>x>Ni>x>Te составов x = 0-0,4, подвергнутых термобарическому воздействию, можно объяснить проявлением влияния дефектности их кристаллической структуры. Наличие в решетке упорядоченных вакансий в слоях на месте ионов металла приводит к появлению слабого магнетизма сплавов. Термобарическая обработка сплавов уменьшает степень упорядочения вакансий их структуры. С уменьшением числа упорядоченных вакансий в слоях с кобальтом уменьшается и удельная намагниченность сплавов. При последующем нагревании сплавов до температур выше ~ 500 K происходит отжиг и переход к термодинамически равновесному состоянию, в результате резко возрастает число упорядоченных вакансий в слоях с ионами кобальта. В конечном результате это приводит к резкому повышению удельной намагниченности сплавов и заметным аномалиям на температурных зависимостях удельного электросопротивления.

Ход зависимостей удельной намагниченности от температуры в интервале 77-1300 K сплавов составов 0,6 ≤ x ≤ 1,0 представлен на рис.2. Он характеризует поведение сплавов указанных составов как парамагнитное.

Рисунок 2 – Температурная зависимость удельной магнитной восприимчивости сплавов системы Co>1–>>x>Ni>x>Te для составов x = 0,6–1,0

Рисунок 3 – Температурные зависимости удельного электросопротивления сплавов Co>1–>>x>Ni>x>Te, подвергнутых термобарической обработке.

По результатам измерений температурных зависимостей удельной намагниченности и восприимчивости заваленных сплавов построена магнитная фазовая диаграмма системы, представленная на рис.3.

Температура исчезновения магнитного упорядочения теллурида кобальта при его нагревании равна 1232 K. При замещении кобальта никелем в сплавах, вплоть до состава x = 0,4, температура Кюри плавно уменьшается до значения 1161 K, после чего она резко понижается до 982 K для состава x = 0,5.

Наличие магнитного взаимодействия в сплавах составов 0 ≤ x < 0,5 подтверждено результатами мессбауэровской спектроскопии образцов (Co>1->>x>Ni>x>) >0,98>Fe>0,02>Te. В сплавах составов 0,5 ≤ x ≤ 1,0 магнитного взаимодействия не наблюдалось.

Рисунок 4 – Концентрационная зависимость удельного электросопротивления сплавов системы Co>1–>>x>Ni>x>Te (0 ≤ x ≤ 1,0) при различных температурах

Анализ температурных зависимостей электросопротивления сплавов системы, подвергнутых термобарической обработке, (рис.4) свидетельствует, что чистые монотеллуриды кобальта и никеля, а также сплавы на их основе, обладают металлическим характером проводимости. Концентрационные зависимости удельного электросопротивления при 77, 293 и 500 K (рис.5) имеют вид выпуклых кривых с максимумом, смещенным в сторону твердых растворов на основе теллурида кобальта (x = 0,1-0,4). Это косвенно указывает на более высокую степень дефектности их кристаллической структуры, что согласуется с выводами, сделанными из исследований концентрационной зависимости их плотности.

Заключение и выводы

По результатам измерений удельной намагниченности и восприимчивости закаленных сплавов в интервале температур 80-1300 K построена магнитная фазовая диаграмма системы Co>1->>x>Ni>x>Te, из которой следует, что сплавы составов x = 0,1-0,5 обладают магнитным упорядочением с температурой перехода в парамагнитное состояние 1232-982 K. Сплавы составов х = 0,6-1,0 парамагнитны. Термобарическая обработка (P ~ 7,0 ГПа, T ~ 1270 K) сплавов на основе теллурида кобальта составов x = 0-0,4 приводит к существенному уменьшению их удельной намагниченности в области температур до ~ 500 K. Выше указанной температуры намагниченность резко возрастает, и при ~ 700 K она практически достигает величин, наблюдаемых у закаленных сплавов.

Нитрид кремния, обладая способностью образовывать твердые растворы с большим количеством ковалентных и ионных соединений, демонстрирует широкий диапазон физико-механических свойств высокого уровня [1-3]. Si>3>N>4> имеет достаточно высокую температуру разложения (1900оС), однако в силу технологических особенностей в керамике на его основе термическая устойчивость свойств определяется состоянием межзеренных границ раздела, заполненных аморфной связкой. Уменьшить количество легкоплавкой (относительно матрицы) составляющей можно в твердорастворных композициях путем растворения связки в решетке основы. Сиалоны состава Si>6-x>Al>x>N>8-x>O>x> (x=0-4,2) в непрерывном ряду твердых растворов в системе Si>3>N>4>-Al>2>O>3 >перспективны для замены нитридкремниевой керамики в термонагруженных деталях машин.

В данной работе керамика из сиалона SiAlON была получена спеканием шихты, состоящей из смеси порошков Si>3>N>4 >и Al>2>O>3>, при температуре 1650оС в течение 2,5 ч. Количество оксидной добавки Al>2>O>3> менялось от 10 до 60 мол.%. Для восполнения потерь азота спекание проводили в среде молекулярного азота особой чистоты. Фазовый состав был изучен методом рентгеноструктурного анализа, количество фаз оценено по интенсивности отражений от плоскостей кристаллической решетки. Тонкая структура материалов исследована с помощью просвечивающей электронной микроскопии и микроэлектронографии, препараты для которой готовились утонением ионной бомбардировкой тонких фольг, вырезанных из объема керамики.

Данные по структуре керамики приведены в табл.1, описание структуры - в табл.2.

Таблица 1. Фазовый состав керамики Si>6-x>Al>x>N>8-x>O>x>

Количество Al2O3, мол.%

Количество

β' - сиалона

Степень

замещенности, х

Размер зерна керамики, мкм

σизг, МПа

10

-

0

1

240

20

3-5

1

1

124

40

60-65

2

3

101

60

90-95

3

10

42

Таблица 2. Структура керамики в системе Si>3>N>4 >- Al>2>O>3>

Количество Al>2>O>3>, мол.%

Структура керамики

10

Матрица - зерна β-Si>3>N>4>, связующая аморфная фаза распределена по границам зерен и тройным стыкам

20

Матрица двухфазна: β-Si>3>N>4> и - 3-5% β'-сиалона, наследующего структуру β-Si>3>N>4>, связующая аморфная фаза распределена по границам зерен и тройным стыкам

40

Матрица двухфазна: β-Si>3>N>4> и - 60-65% β'-сиалона, наблюдается увеличение среднего размера зерен до 3 мкм, количество связки резко снижено

60

Матрица однофазна: 90-95% β'-сиалона, значительное увеличение среднего размера зерен до 10 мкм, минимальное количество связки

При низком содержании оксидной фазы (10-20% Al>2>O>3>) в керамике процессы собирательной рекристаллизации не активируются, размер нитридкремниевых зерен около 1 мкм. Зерна матричной фазы достаточно совершенны, плотность дислокаций в них незначительна.

Картина тонкой структуры резко меняется в двухфазной матрице при примерно равном содержании нитрида кремния и сиалона. Из-за разницы коэффициентов термического расширения этих двух фаз керамика находится в упругонапряженном состоянии, это выражается огромным количеством изгибных экстинкционных контуров на электронномикроскопических снимках зеренной структуры. Механизмы релаксации упругих напряжений недостаточны для погашения напряжений.

Структура практически однофазной твердорастворной сиалоновой керамики (60% Al>2>O>3>) резко отличается от строения предыдущих материалов. Во-первых, в сиалоне активно протекает собирательная рекристаллизация, зерна вырастают до 10 мкм. Во-вторых, включается релаксационный механизм множественного двойникования, который снимает упругое напряжение в керамике. Зерна имеют полосчатую (слоистую) микродвойниковую структуру, толщина двойников составляет 100 нм. Слои вытянуты вдоль гексагональной оси.

Такие структурные превращения являются следствием сложного компенсационного зарядового механизма приведения системы в нейтральное состояние при образовании твердых растворов между ковалентным и ионным соединениями. Двойное замещение кремния на алюминий и азота на кислород порождает систему катионных и анионных вакансий, а также внедренных атомов, которые, как правило, сегрегируются в определенных плоскостях, порождая ориентационный порядок. Как следствие могут образоваться сверхструктуры, политипы, двойники. В данном случае наблюдается компенсационный механизм, связанный с образованием микродвойников.

Актуальность и практическая значимость исследований халькогенидной пассивации поверхности полупроводников AIIIBV обоснована работами [1-5]. В работах [2-5] показано, что твердофазное термостимулированное гетеровалентное замещение анионов в кристаллах AIIIBV элементами VI группы ведёт к образованию сплошных кристаллических слоёв A>2>IIIC>3>VI. Авторами работы [5] было сделано предположение о том, что на начальной стадии реакция протекает через зародышеобразование с последующей их коалесценцией. Понятно, что пространственный масштаб топографической неоднородности поверхности гетероструктур определяется количеством зародышей и кинетикой их роста до коалесценции. Поэтому в настоящей работе анализируется кинетика роста уединённых зародышей.

Термостимулированное гетеровалентное замещение анионов в решётке AIIIBV на халькоген впервые проводилось в эвакуированном квазизамкнутом объёме с механическим сдвиговым устройством подложек, позволяющим ограничивать время процесса до 1-2 минут с точностью не хуже 20 секунд (время остывания держателя подложки). Парциальное давление паров халькогена P 1,3 Па.

Микроскопический механизм твердофазной реакции замещения анионов в кристаллической решётке AIIIBV на элемент CVI сводится к термостимулированному образованию вакансий в анионных узлах с сохранением их координационного окружения катионами и их последующему заполнению атомами CVI из адсорбированного слоя. На поверхности AIIIBV могут находиться как различные молекулы, так и атомы халькогена. Встреча молекулы C>2>VI с вакансией аниона BV в подложке, по-видимому, стимулирует диссоциацию C>2>VI  CVI + CVI или C>3>VI  C>2>VI + CVI с образованием атомов CVI и последующее образование элемента структуры A>2>IIIC>3>VI. Если концентрация атомизированного халькогена достаточно велика, процесс заполнения сгенерированных вакансий можно считать мгновенным. Тогда кинетика роста концентрации элементов структуры A>2>IIIC>3>VI определяется только темпом генерации вакансий элемента BV подложки. Несмотря на то, что периоды идентичности и кристаллические структуры A>2>IIIC>3>VI и A>3>IIIB>3>V близки, имеющееся рассогласование периодов идентичности решёток вызывает механические напряжения, стимулирующие процесс генерации вакансий. В мостиках CVI - AIII - BV связи CVI - AIII более прочные, чем связи AIII - BV. Поэтому после формирования уединённого элемента структуры A>2>IIIC>3>VI темп генерации вакансий элемента BV максимален в его ближайшем окружении с радиусом порядка радиуса релаксации механических напряжений (r>0>). Тогда кинетику роста концентрации A>2>IIIC>3>VI можно описать уравнением

, (1)

где - концентрация A>2>IIIC>3>VI (за единицу принята концентрация при сплошном покрытии поверхности AIIIBV); t - время, - двумерный радиус-вектор с началом в точке генерации зародыша; γ - константа, определяющая темп генерации вакансий; σ - круг с радиусом r>0> и центром в точке ; dS - элемент поверхности. Выражение в круглых скобках - мера механических напряжений вблизи точки , выражение в квадратных скобках - концентрация ненарушенного материала AIIIBV. Кинетика роста концентрации U>0> (t) в центре зародыша описывается дифференциальным уравнением вида

, (2)

с решением

, . (3)

После достижения единичной концентрации в центре зародыша (γ·t >> 1) для приближённого описания решений уравнения (1) можно использовать кусочно-линейные региональные аппроксимации. В переходной области

, , (4)

, , (5)

где ξ (t) - центр зоны реакции, Δ (t) - ширина зоны реакции. Подставляя аппроксимации (4), (5) в уравнение (1) и уравнивая коэффициенты при одинаковых степенях (r (t)), можно получить уравнения

, (6)

с начальными условиями ξ (t) |>t>>=0>=r, k (t) |>t>>=0>=1/r>0>, описывающие кинетику движения фронта зародыша и рост ширины переходной области.

Рис.5. Гистограмма P (r) - 1, Функция распределения по радиусам F (r) - 2, ξ-1 (t) - 3. r>0> = 17 нм, γ = 0,007 с-1, τ = 5 мин, T = 263 K.

Микрофотографии поверхности для гетероструктур Ga>2>Se>3> - GaAs получены в растровом электронном микроскопе JSM-840 в режиме вторичной электронной эмиссии по топографическому контрасту от поверхности. На рис.1 приведена гистограмма, рассчитанная по экспериментальной микрофотографии, и функция распределения зародышей по радиусам. Имея кинетику ξ (t) движения фронта уединённого зародыша, рассчитаны плотности вероятности f (ξ) и функции распределения F (ξ) зародышей по их радиусам к определённым моментам времени τ обработки в парах халькогенов. Предполагалось, что зародыши генерируются с постоянной скоростью на свободной поверхности подложки, а поверхность занятая зародышами, на начальной стадии мала и коалесценция отсутствует.

Функция ξ-1 (t) отображает кинетику образования и роста зародышей. Соответствующая кривая нанесена сплошной линией. Экстраполяция экспериментальной функции распределения от точки перегиба к значению F (r) =0 даёт критическое значение радиуса зародыша равное 17 нм, что хорошо согласуется с радиусом когерентности кристаллических решёток GaAs и Ga>2>Se>3> равное 14 нм. Дальнейшая экстраполяция той же зависимости к оси r =0 даёт оценку времени образования уединённого зародыша (с единичной концентрацией в круге радиуса r>0>) t>0 >1/γ ≈ 300 с. Оценки концентрации зародышей по микрофотографиям позволяют указать темп генерации зародышей α= (0.3÷0.4) ·1011 м-2·с-1.

Из гистограммы распределения зародышей по радиусам для больших времён процесса (~40 мин) явно виден двухмодовый характер распределения, обусловленный коалесценцией зародышей. Если по концентрации определить средний размер, соответствующий покрытию контактирующими зародышами <r>= (0.5÷0.6) ·10-7 м, он близок к математическому ожиданию радиуса, рассчитанному по гистограмме M (r) =0.46·10-7 м. Оценка темпа генерации зародышей для указанного технологического режима также хорошо согласуется с приведённым выше значением. Оценки масштабов неоднородностей поверхности и их концентраций согласуются также с результатами измерений релеевского рассеяния от поверхностей Ga>2>Se>3> - GaAs и туннельной микроскопии [5]. Аналогичные экспериментальные результаты, не приведённые в работе, получены и для других гетеросистем A>2>IIIC>3>VI - AIIIBV.

Таким образом, учитывая, что механические напряжения, возникающие в результате незначительного несоответствия параметров кристаллических решёток в гетеростистемах, стимулируют генерацию катионных вакансий на фронте зародышей, удаётся объяснить основные экспериментальные результаты, полученные в работе.

Результаты исследования температурной зависимости удельного электросопротивления сплавов системы, выполненного в области температур 77-730 K, свидетельствуют о металлическом характере их проводимости. Наиболее высоким удельным электросопротивлением при комнатной температуре обладают сплавы на основе теллурида кобальта (x = 0,1-0,4). Это косвенно подтверждает вывод о более высокой степени дефектности их кристаллической структуры, сделанный по результатам исследований концентрационной зависимости их плотности.

Литература

    Маковецкий Г.И., Васьков Д.Г., Янушкевич К.И. Твердые растворы Co>x>Ni>1->>x>Te (0 ≤ x ≤ 1) и их структурные характеристики // Доклады НАН Беларуси.44. N2.2000. С.53-55.

    Маковецкий Г.И., Васьков Д.Г., Янушкевич К.И. Твердые растворы Co>1->>x>Ni>x>Te (0 ≤ x ≤ 1) и их прочностные характеристики // ФТВД.11. N4.2001. С.95-100.

    G.I. Makovetskii, D. G. Vas’kov, K.I. Yanushkevich. Properties and Magnetic Phase Diagram of the CoTe-NiTe System // The Physics of Metals and Metallography.100. N1.2005. P. S21-S25.