Доработка источника напряжения ВС 4-12

1


ДОРАБОТКА ИСТОЧНИКА НАПРЯЖЕНИЯ ВС 4-12

Л
юбой школьный учитель, преподающий раздел физики «Электричество и магнетизм) в своей практике систематически использует такой широко известный источник постоянного напряжения, как ВС 4-12, позволяющий получать на выходе постоянное (пульсирующее) напряжение 4, 6, 8, 10 и 12 В при максимальном токе нагрузке 4 А. Принцип действия этого прибора очень прост и легко понятен из принципиальной схемы, показанной на рисунке 1 а.

Следует отметить, что этот источник питания оснащён относительно мощным понижающим трансформатором, способным питать нагрузку током, превышающим 4 А. Тем не менее делать этого нельзя, так как диоды выпрямительного моста рассчитаны на меньший ток. Однако незначительная доработка прибора позволяет использовать его как в стандартном режиме работы, так и в качестве источника переменного напряжения с максимальным током нагрузки, превышающим 4 А. Для этого достаточно в конструкцию прибора ввести всего один тумблер, как это показано на рисунке 1 б. В верхнем по схеме положении контактов тумблера выходные гнёзда прибора подключаются к выходу выпрямительного моста, и источник работает в стандартном режиме. Если же контакты тумблера перевести в нижнее по схеме положение, то одно выходное гнёздо окажется подключённым непосредственно ко вторичной обмотке трансформатора, а второе – к ползунку галетного переключателя. Теперь на выходе источника будет действовать переменное напряжение, регулируемое приблизительно в тех же пределах, что и постоянное.

Конструктивно доработка источника напряжения может быть осуществлена следующим образом. Чтобы не делать в металлическом корпусе прибора лишних отверстий, можно удалить индикаторную лампочку накаливания (всё равно она часто теряется или перегорает), а на её место установить тумблер.

Т
акже хорошо известно, что эти источники напряжения нередко выходят из строя из-за перегрузок по току, которые возникают особенно часто когда прибор попадает в руки школьников без присмотра учителя. Причём, наверное, каждый учитель замечал, что некоторые ВС 4-12 на удивление живучи, а иные – «горят» очень легко. Причина этому в следующем. Изначально диодный мост прибора изготавливался из, так называемых, селеновых шайб, устанавливаемых на мощных радиаторах. Позже промышленность перешла на использование мощных диодов КД202, способных выдерживать меньший ток, при этом установлены они в ВС 4-12 без радиаторов, что и сокращает срок службы таких приборов.

Проблема может быть решена путём изготовления несложного защитного устройства, отключающего нагрузку прибора автоматически в случае превышения током допустимого значения. Принципиальная схема возможного варианта такого устройства показана на рисунке 2. При соответствующем выборе транзисторов устройство способно защищать от перегрузок как простые, так и стабилизированные выпрямители с выпрямленным напряжением от 6 до 60 В и допустимым током нагрузки от 30 мА до 10 А. Конденсаторы и предназначены для работы защитного устройства в режиме импульсных перегрузок и при обычном его использовании должны быть из схемы исключены.

Принцип действия защитного устройства состоит в следующем. Когда ток нагрузки меньше максимально допустимого тока () транзистор открыт, а - закрыт. Падение напряжения на участке эмиттер – коллектор транзистора (между точками А и Б) составляет несколько десятых долей вольта. В случае перегрузки () напряжение между точками А и Б возрастает, что вызывает появление тока в цепи базы транзистора . В результате транзистор отпирается, а закрывается. Это ведёт к ещё большему росту напряжения между точками А и Б. Благодаря имеющейся положительной обратной связи (через резистор ) схема очень быстро переходит во второе устойчивое состояние: - открыт, - закрыт. При этом большая часть напряжения выпрямителя оказывается приложеной к лампе Л, которая загорается, указывая на перегрузку. Потребляемый при этом ток от выпрямителя в наихудшем случае (короткое замыкание) равен сумме токов лампы и открытого транзистора , что составляет величину в 23 раза меньшую . После устранения перегрузки и кратковременного нажатия кнопки Кн защитное устройство переходит в исходное состояние, лампа гаснет.

Выбор типа транзисторов и минимального сопротивления резисторов и осуществляется по ниже приведённой таблице.

, В

, А

Типы транзисторов

, кОм

, кОм

6  15

0,03  0,1

МП39  МП42

МП42; МП42А; МП42Б

6  30

0,1  1,5

МП42  МП42Б

П213Б  П217

6  60

1,5  5,0

П213Б  П217

П214В; П214Г; П217В

9  60

1,5  10,0

П213Б  П217

П210Б; П210В

При сборке устройства необходимо установить резистор сопротивлением в 2  3 раза больше минимального (окончательно его подбирают в процессе налаживания устройства). При использовании мощных транзисторов (П213, П214 и т. п.) сопротивление резистора необходимо уменьшить до величины около 510 Ом.

Поскольку оба транзистора работают в качестве электронных ключей, тепловые режимы их лёгкие и радиаторов можно не применять. Коэффициент передачи тока транзисторов должен быть не менее 20. Лучше, если эта величина (особенно для транзистора ) будет превышать 40, так как в этом случае уменьшается ток, потребляемый от выпрямителя для поддержания в открытом состоянии.

Сигнальную лампу выбирают на рабочее напряжение и номинальный ток в 2  3 раза меньший . Низковольтные лампы (на 3,5 В или 6,3 В) следует включать последовательно с добавочным резистором, сопротивление которого можно рассчитать по формуле:

.

При токе подобрать нужную лампу может оказаться затруднительно. В этом случае для коммутации имеющейся лампы можно воспользоваться электромагнитным реле. Его обмотка должна обладать сопротивлением, как минимум, в 1,52 раза большим величины , а ток срабатывания - во столько же раз меньшим, чем . Контакты реле могут коммутировать любое сигнальное устройство.

В некоторых случаях бывает необходимым, чтобы устройство не реагировало на импульсные перегрузки по току. Тогда можно включить в схему конденсатор ёмкостью несколько сотен микрофарад или замедлить срабатывание защиты путём установки конденсатора ёмкостью несколько микрофарад.

Налаживание устройства состоит в следующем. Резистор составляют из последовательно включённых переменного и постоянного резисторов. При этом общее сопротивление должно быть не менее вычисленного по формуле:

,

где - статический коэффициент передачи тока транзистора (иначе этот транзистор выйдет из строя). К выходным гнёздам устройства последовательно с амперметром подключают эквивалент нагрузки (проволочный резистор) сопротивлением

.

Затем включают питание устройства и подбирают сопротивление так, чтобы устройство срабатывало при заданном токе . В исходное состояние устройство возвращают нажатием кнопки Кн. После окончания настройки заменяют переменный и постоянный резисторы одним постоянным резистором соответствующей величины, причём его мощность рассчитывают по формуле:

.

Конструктивно устройство защиты целесообразно выполнять в самостоятельном корпусе из пластмассы или другого диэлектрического материала в виде отдельной приставки, что позволит использовать его при работе с различными источниками постоянного напряжения, удовлетворяющими выше изложенным требованиям. В случае отсутствия такой необходимости плату защитного устройства имеет смысл разместить внутри корпуса прибора на диэлектрическом основании, обеспечив надёжное отсутствие контакта токопроводящих дорожек платы и металлических корпусов деталей устройства с корпусом прибора.