Двигатели внутреннего сгорания (работа 4)

Содержание

1. Описание процессов, происходящих в одном цикле ДВС

2. Расчет параметров одного цикла и построение индикаторной диаграммы ДВС

3. Расчет и построение внешней характеристики ДВС

4. Построение диаграммы фаз газораспределения

5. Проектирование кривошипно-шатунного механизма

6. Определение основных параметров ДВС

7. Тепловой баланс двигателя

Список литературы

1. Описание процессов, происходящих в одном цикле ДВС

Рассмотрим действительный цикл работы четырехтактного дизельного двигателя по мере происходящих в нем процессов.

Процесс впуска

Первый такт – впуск горючей смеси.

Во время такта впуска (рис. 1, а), когда поршень 1 движется от В.М.Т. к Н.М.Т., а впускной клапан 3 открыт, в цилиндр 2 поступает атмосферный воздух, который, нагреваясь в процессе сжатия, воспламеняет топливо, впрыскиваемое в конце такта сжатия. Гидравлическое сопротивление впускного трубопровода повышает давление воздуха в конце такта впуска до 0,08 МПа. Температура воздуха в цилиндре составляет 50–80° С.

Процесс сжатия

Второй такт – сжатие смеси.

Во время такта сжатия (рисунок 1, б), когда впускной 3 и выпускной 5 клапаны закрыты, температура, и давление воздуха в цилиндре значительно возрастают. Вследствие высокой степени сжатия (е=7,8) давление и температура воздуха достигают значений 3,419МПа и 600 °С соответственно. В конце такта в цилиндр через форсунку 4 (рисунок, 1, в) впрыскивается топливо. В зависимости от формы камеры сгорания и типа форсунки давление впрыска находится в пределах 8…40 МПа.

Процесс сгорания и расширения

Третий такт – расширение, или рабочий ход.

Впрыснутое распыленное топливо, перемешиваясь со сжатым воздухом, самовоспламеняется и сгорает. При этом температура газов к концу сгорания повышается до 1600 °С, а давление до 7,864МПа. В конце такта расширения температура снижается до 700…10000С, а давление до 0,677МПа. Под давлением газов, образующихся в результате сгорания топливовоздушной смеси, поршень перемещается от В.М.Т. к Н.М.Т., совершая механическую работу (рисунок 1, в).

Процесс выпуска

Четвертый такт – выпуск отработавших газов.

Продукты сгорания выходят из цилиндра в атмосферу (рисунок 1, г). Температура выпуска равна 600…700 °С, а давление газов – 0,125МПа.

0100090000031602000002009601000000009601000026060f002203574d46430100000000000100c02d0000000001000000000300000000000000030000010000006c0000000000000000000000350000006f000000000000000000000005350000df1a000020454d46000001000003000010000000020000000000000000000000000000007f120000771a0000c80000001f010000000000000000000000000000000f030058600400160000000c000000180000000a0000001000000000000000000000000900000010000000890c00005c060000520000007001000001000000a4ffffff00000000000000000000000090010000000000cc04400022430061006c00690062007200690000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000110040ae110010000000a4b1110024af1100524f6032a4b111009cae1100100000000cb0110088b11100244f6032a4b111009cae11002000000049642f319cae1100a4b1110020000000ffffffff7c4fe500d0642f31ffffffffffff0180ffff01800fff0180ffffffff000000000008000000080000d4fbe80601000000000000005802000025000000372e9001cc00020f0502020204030204ef0200a07b20004000000000000000009f00000000000000430061006c00690062007200000000000000000064af1100dee32e31e88d0832c4b21100d0ae11009c38273108000000010000000caf11000caf1100e87825310800000034af11007c4fe5006476000800000000250000000c00000001000000250000000c00000001000000250000000c00000001000000120000000c00000001000000180000000c0000000000000254000000540000000000000000000000350000006f00000001000000e7298740a48e87400000000057000000010000004c000000040000000000000000000000860c00005906000050000000200001003600000046000000280000001c0000004744494302000000ffffffffffffffff8a0c00005d060000000000004600000014000000080000004744494303000000250000000c0000000e000080250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c02eb00c901040000002e0118001c000000fb02f3ff0000000000009001000000cc0440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010000040000002d010000040000002d0100000400000002010100050000000902000000020d000000320a0d0000000100040000000000c801eb00204008001c000000fb020200010000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010100040000002d010100030000000000

2. Расчет параметров одного цикла и построение индикаторной диаграммы ДВС

Объем камеры сгорания:

V>c>> >= 1 (в условных единицах). (1)

Полный объем:

V>a>> >= e × V>c>, (2)

где e – степень сжатия;

V>a>> >= 8×1 = 8.

Показатель политропы сжатия:

n>1> =1,41 – 100/n>e>>,> (3)

где n>e> – номинальная частота вращения коленвала, об./мин;

n>1>= 1,41 – 100/4500 = 1,39

Давление в конце такта сжатия, МПа:

p>c>> >= p>a> × e n1, (4)

где p>a> – давление при впуске, МПа;

p>c>> >= 0,09×8 1,39 = 1,62 МПа

Промежуточные точки политропы сжатия (табл. 1):

p>x>> >= (V>a> / V>x>) n1> >× p>a>, (5)

При > > p>x>> >= (8 / 1) 1,39> >× 0,09=1,62 МПа

Таблица 1. Значения политропы сжатия

V>x>

2

3

4

5

6

7

8

p>x>, МПа

0,62

0,35

0,24

0,17

0,13

0,11

0,09

Давление в конце такта сгорания, МПа:

p>z>> >= l × p>c>, (6)

где l – степень повышения давления;

p>z>> >= 3,8 × 1,62 = 6,16 МПа

Показатель политропы расширения:

n>2> =1,22 – 130/n>e>, (7)

n>2 >= 1,22 – 130/4500 = 1,19

Давление в конце такта расширения:

p>b>> >= p>z> / e n2>,> (8)

p>b>= 6,16/81,19= 0,52 МПа

Промежуточные точки политропы расширения (табл. 2):

p>x>> >= (V>b> / V>x>) n2> >× p>b>. (9)

При > > p>x>> >= (8 / 1) 1,19> >× 0,52= 6,16 МПа

Таблица 2. Значения политропы расширения

V>x>

2

3

4

5

6

7

8

p>x>, МПа

2,71

1,67

1,19

0,91

0,73

0,61

0,52

Среднее теоретическое индикаторное давление, МПа:

>>, (10)

>>МПа.

Среднее давление механических потерь, МПа:

>>, (11)

где > >– средняя скорость поршня в цикле. Предварительно > >=>>.

>>МПа

Действительное индикаторное давление, МПа, с учетом коэффициента скругления диаграммы n=0,95:

>>, (12)

где > > – давление выхлопных газов, МПа.

>> МПа

Среднее эффективное давление цикла:

>>, (13)

>> МПа

Полученные расчетом данные используем для построения индикаторной диаграммы (рисунок 2).

3. Расчет и построение внешней характеристики ДВС

Мощность P>e>>, >кВт>:>

>>, (14)

n>ei>> >– текущие (принимаемые) значения частоты вращения коленчатого вала;

n>p> – номинальная частота вращения.

Вращающий момент, Н∙м:

>>, (15)

Удельный расход, гр/кВт∙ч:

>> (16)

Массовый расход, кг∙ч:

>> (17)

Полученные расчетом значения сведены в таблицу 3.

Таблица 3. Зависимость мощности P>e>, вращающего момента Т>, удельного расхода g>e>> >и массового расхода G>e> от частоты вращения коленвала n>e>.

Параметр

Отношение n>ei>/ n>p>

0,16

0,22

0,44

0,66

0,88

1

1,11

n>e> (об/мин)

700

1000

2000

3000

4000

4500

5000

P>e>, кВт

13,6

19,33

41,1

60,6

73

75

73,1

T>e>, H×м

185,5

186,6

196,2

192,9

174,3

159,2

139,6

g>e>,> >гр/кВт∙ч

284,4

248

222,8

216,3

228,8

243,5

261,9

G>e>, гр∙ч

3868

4794

9157

13108

16702

18263

19145

Графическая зависимость мощности P>e>, вращающего момента Т>, удельного расхода g>e>> >и массового расхода G>e> от частоты вращения коленвала n>e> отображена на рисунке 4.

4. Построение диаграммы фаз газораспределения

Радиус кривошипа коленвала, м:

r = S / 2, (18)

r = 0,083/2 = 0,0415 м

4.2 Отрезок ОО>1> (см. диаграмму фаз газораспределения, рис. 3):

>>, (19)

где r – радиус кривошипа в масштабе индикаторной диаграммы (r=55 мм)

g – коэффициент;

>>, (20)

l> – длина шатуна, м;

r – радиус кривошипа (r = 0,0415 м). Принимаем:

l> = 4r; (21)

>>

Отсюда,

>>мм, (22)

Угол впрыска:

>>

Полученные расчетом данные используем для построения диаграммы фаз газораспределения (рисунок 3) и ее связи с индикаторной диаграммой (рисунок 2).

5. Проектирование кривошипно-шатунного механизма

Рабочий объем цилиндра, л:

>>, (23)

где t – тактность двигателя (t = 4);

P> – заданная мощность двигателя, кВт;

i – заданное число цилиндров,

>>

5.2 Рабочий объем, м3:

>>, (24)

где D – диаметр поршня, м:

>>, (25)

S – неизвестный ход поршня, м.

Зная отношение S/D=0,9, определим:

>>м;

Принимаем > >92 мм. Тогда > >мм.

5.3 Средняя скорость поршня, м/с:

>>, (26)

>> м/с < 13 м/с = [>>]

Здесь [>>] – максимальная допускаемая скорость поршня.

Таблица 4. Параметры бензинового ДВС

Параметр бензинового ДВС

Значение параметра

d = D

d = 92 мм

>>

>>

>>d

>>

>> > >

>>

>>

>> > >

>> > >

L= (0,8…1,1) d

L= 1.92 = 92 мм

h=(0,6…1,0) d

h = 0,7. 92 = 64 мм

>>

>>

l> = (3,5…4,5) r

l> = 4×41,5 = 166 мм

H = (1,25…1,65) d

H = 1,3×92 = 120 мм

d>k> = (0,72…0,9) d

d>k> = 0,8 × 92= 74 мм

d> = (0,63…0,7) d

d> = 0,65×92 = 60 мм

l>k> = (0,54…0,7) d>k>

l>k> = 0,6×74 = 44 мм

l>шат> = (0,73…1,05) d>

l>шат> = 1×60 = 60 мм

При известном диаметре поршня его остальные основные размеры определяются из эмпирических соотношений. Результаты расчетов приведены в таблице 4.

Обозначения, принятые в таблице 4:

d – диаметр поршня;

d>п> – диаметр пальца;

d> – внутренний диаметр пальца;

l>п> – длина пальца;

l>2> – расстояние между внутренними торцами бобышек;

d – толщина днища поршня;

d>d> – внешний диаметр внутреннего торца бобышек;

с>1> – расстояние от днища поршня до первой канавки под поршневое кольцо;

е>1> – толщина стенки головки поршня;

h – расстояние от днища поршня до центра отверстия под палец;

b> – глубина канавки под поршневое кольцо;

L – расстояние от торца юбки поршня до канавки под кольцо головки поршня;

H – высота поршня;

d> – минимальная толщина направляющей части поршня;

d> – диаметр шатунной шейки;

d> – диаметр коренной шейки коленвала;

l>шат> – длина шатунной шейки;

l> – длина коренной шейки коленвала.

Полученные расчетом параметры используем для проектирования кривошипно-шатунного механизма (рисунок 5).

6. Определение основных параметров ДВС

Крутящий момент, Н∙м:

>> (27)

>>

Литровая мощность, кВт/л:

>> (28)

>>

Удельная поршневая мощность, кВт/дм2:

>> (29)

>>

Механический КПД:

>> (30)

>>

Индикаторный КПД:

>>, (31)

где > > – коэффициент избытка воздуха (>> = 0,9)

>> = 14.96 (для бензиновых двигателей)

>> – низшая теплота сгорания топлива, ккал/кг. > >= 44

>> – плотность топливо – воздушной смеси, кг/м3. > >=1,22

>> = 0,7

>>

Эффективный КПД:

>>>> (32)

>>

Удельный расход, г/кВт∙ч:

>> (33)

>>

Массовый расход, г∙ч:

>> (34)

>>

Перемещение поршня

Зависимость перемещения поршня от угла поворота коленчатого вала определяется по формуле:

>> (35)

Строим график перемещения поршня из условия > >=0,25, угол поворота коленчатого вала 0–3600 с шагом 300.

Скорость поршня

Зависимость скорости поршня от угла поворота коленчатого вала определяется по формуле:

>> (36)

Строим график скорости поршня из условия > >=0,25, угол поворота коленчатого вала 0–3600 с шагом 300.

Ускорение поршня

Зависимость скорости поршня от угла поворота коленчатого вала определяется по формуле:

>> (37)

Строим график ускорения поршня из условия > >=0,25, угол поворота коленчатого вала 0–3600 с шагом 300.

Силы, действующие в двигателе

Сила инерции

Сила инерции определяется по формуле:

>>, (38)

где > >- угловая скорость поршня, определяемая по формуле:

>>, (39)

где > >- номинальная частота вращения двигателя. > >=4500 об/мин.

>>.

>>- приведенная масса поршня, определяемая по формуле:

>>, (40)

где > >- масса поршня, определяемая по формуле:

>> (41)

>>

>>- масса шатуна, сосредоточенная на оси поршневого пальца:

>>, (42)

где > >- масса шатуна, определяемая по формуле:

>> (43)

>>

>>

В итоге по формуле (40) определяем приведенную массу поршня:

>>

Значения силы инерции в зависимости от угла поворота коленчатого вала заносим в таблицу 5.

Сила давления газов

Сила давления газов определяется по формуле:

>>, (44)

где > >- значения давления при данном угле поворота.

>>- атмосферное давление. > >=0,1 МПа.

>>- площадь поршня.

Площадь поршня определим по формуле:

>> (45)

>>

Значения силы давления газов в зависимости от угла поворота коленчатого вала заносим в таблицу 5.

Суммарная сила

Суммарная сила определится по формуле:

>> (46)

Значения суммарной силы в зависимости от угла поворота коленчатого вала заносим в таблицу 5.

Таблица 5. Зависимости силы давления газов, силы инерции и суммарной силы от угла поворота коленчатого вала

Угол

Давление, МПа

Сила давления газов, Н

Ускорение, м/с2

Сила инерции, Н

Суммарная сила, Н

0

0,125

165

11519,19

-11519,19

-11354,19

30

0,09

-66

9123,197

-9123,197

-9189,197

60

0,09

-66

3409,68

-3409,68

-3475,68

90

0,09

-66

-2303,84

2303,84

2237,84

120

0,09

-66

-5713,52

5713,52

5647,52

150

0,09

-66

-6819,36

6819,36

6753,36

180

0,09

-66

-6911,51

6911,51

6845,51

210

0,1

0

-6819,36

6819,36

6819,36

240

0,12

132

-5713,52

5713,52

5845,52

270

0,15

330

-2303,84

2303,84

2633,84

300

0,33

1518

3409,68

-3409,68

-1891,68

330

0,79

4554

9123,197

-9123,197

-4569,197

360

1,62

10032

11519,19

-11519,19

-1487,19

390

3,7

23760

9123,197

-9123,197

14636,803

420

1,6

9900

3409,68

-3409,68

6490,32

450

0,82

4752

-2303,84

2303,84

7055,84

480

0,65

3630

-5713,52

5713,52

9343,52

510

0,54

2904

-6819,36

6819,36

9723,36

540

0,44

2244

-6911,51

6911,51

9155,51

570

0,125

165

-6819,36

6819,36

6984,36

600

0,125

165

-5713,52

5713,52

5878,52

630

0,125

165

-2303,84

2303,84

2468,84

660

0,125

165

3409,68

-3409,68

-3244,68

690

0,125

165

9123,197

-9123,197

-8958,197

720

0,125

165

11519,19

-11519,19

-11354,19

Сила, направленная по радиусу кривошипа

Сила, направленная по радиусу кривошипа определяется по формуле:

>> (47)

Строим график изменения силы К из условия > >=0,25, угол поворота коленчатого вала 0–7200 с шагом 300.

Тангенциальная сила

Тангенциальная сила определяется по формуле:

>> (48)

Строим график изменения тангенциальной силы из условия > >=0,25, угол поворота коленчатого вала 0–7200 с шагом 300.

Нормальная сила

Нормальная сила определяется по формуле:

>> (49)

Строим график изменения нормальной силы из условия > >=0,25, угол поворота коленчатого вала 0–7200 с шагом 300.

Сила, действующая по оси шатуна

Сила, действующая по оси шатуна, определяется по формуле:

>> (50)

Строим график изменения силы, действующей по оси шатуна из условия > >=0,25, угол поворота коленчатого вала 0–7200 с шагом 300.

угол

Сила К

угол

Сила Т

угол

Сила N

угол

Сила S

0

-11354,2

0

0

0

0

0

-11354,2

30

-7378,93

30

-5761,63

30

-1157,84

30

-9262,71

60

-1073,99

60

-3458,3

60

-764,65

60

-3559,1

90

-572,887

90

2237,84

90

572,887

90

2309,451

120

-3902,44

120

4162,222

120

1242,454

120

5783,06

150

-6273,87

150

2519,003

150

850,9234

150

6807,387

180

-6845,51

180

0

180

0

180

6845,51

210

-6335,19

210

-2543,62

210

-859,239

210

6873,915

240

-4039,25

240

-4308,15

240

-1286,01

240

5985,812

270

-674,263

270

-2633,84

270

-674,263

270

2718,123

300

-584,529

300

1882,222

300

416,1696

300

-1937,08

330

-3669,07

330

2864,887

330

575,7188

330

-4605,75

360

-1487,19

360

0

360

0

360

-1487,19

390

11753,35

390

9177,275

390

1844,237

390

14753,9

420

2005,509

420

6457,868

420

1427,87

420

6646,088

450

-1806,3

450

7055,84

450

1806,295

450

7281,627

480

-6456,37

480

6886,174

480

2055,574

480

9567,764

510

-9033

510

3626,813

510

1225,143

510

9801,147

540

-9155,51

540

0

540

0

540

9155,51

570

-6488,47

570

-2605,17

570

-880,029

570

7040,235

600

-4062,06

600

-4332,47

600

-1293,27

600

6019,604

630

-632,023

630

-2468,84

630

-632,023

630

2547,843

660

-1002,61

660

3228,457

660

713,8296

660

-3322,55

690

-7193,43

690

5616,79

690

1128,733

690

-9029,86

720

-11354,2

720

0

720

0

720

-11354,2

Средний крутящий момент

угол

Крутящий момент

ср. момент

0

0

0

30

-239,1075005

-71,925252

60

-143,5195164

-234,1036

90

92,87036

173,9265

120

172,732223

670,601599

150

104,5386361

607,040943

180

0

0

210

-105,5602831

240

-178,788152

270

-109,30436

300

78,1121964

330

118,8927905

360

0

390

380,8569325

420

268,0015386

450

292,81736

480

285,776231

510

150,5127511

540

0

570

-108,1144006

600

-179,7974735

630

-102,45686

660

133,9809489

690

233,096765

720

0

>>, где Т> – значение тангенциальной силы при данном угле поворота.

Т>ср.>= 163,2 Н∙м, что составляет разницу с ранее

посчитанным моментом (27) 2,45%.

7. Тепловой баланс двигателя

>>Теплота сгорания израсходованного топлива:

>> (51)

>>

Эквивалентная эффективная теплота работы двигателя:

>> (52)

>>

Список литературы

1. Сырямин Ю.Н. Двигатели внутреннего сгорания. Методические указания к выполнению расчетно-графического упражнения. Н., 1998. 13 с.

2. Сергеев В.П. Автотракторный транспорт. М., 1984. 304 с.

3. Колчин А.И. Расчет автомобильных и тракторных двигателей. М., 1971.

4. Орлин А.И. Двигатели внутреннего сгорания. М., 1970. 384 с.

5. СТП СГУПС 01.01–2000. Курсовой и дипломный проекты. Требования к оформлению. 41 с.