Взаимозаменяемость продовольственных продуктов: масла животного и масла растительного. Их потребление

тема: Взаимозаменяемость продовольственных продуктов: масла животного и масла растительного. Их потребление.

Этап 1 Постановочный

Целью этой работы является изучение взаимозаменяемости продовольственных товаров: масла животного и масла растительного. А затем построение модели, которую можно было бы использовать для прогнозирования взаимозаменяемости товаров.

Этап 2 Априорный

Изучив сложившуюся ситуацию на рынке продовольственных товаров, я пришла к выводу, что взаимозаменяемость вышеуказанных продуктов зависит от цент на эти продукты, от национальных предпочтений, от удаленности от производства, сезонных особенностей употребления этих продуктов.

Итак, результативный признак Y – потребление животного масла кг., фактор Х – потребление растительного масла кг.

Этап 3 Информационный

Для изучения влияния именно фактора Х (потребление растительного масла), постараемся отобрать в выборку однородные участки, т.е. с примерно одинаковыми характеристиками, и за один и тот же период времени.

В выборку отобрано 55 регионов РФ, расположенных в Южном федеральном округе, Приволжском федеральном округе, Уральском федеральном округе, Сибирском федеральном округе и Дальневосточном федеральном округе на январь – февраль 2007 года.

Источник статистических данных – сайт Госкомстата РФ, распечатки прилагаются.

У (потребление животного масла), кг

Х (потребление растительного масла), кг

Республика Адыгея

50,8

138,4

Республика Дагестан

50,8

147,5

Республика Ингушетия

46,3

113

Кабардино-Балкарская Республика

65,1

167

Республика Калмыкия

45,5

105,6

Карачаево-Черкесская Республика

66,9

167,2

Республика Северная Осетия - Алания

76,1

198,7

Краснодарский край

83,1

252,1

Ставропольский край

63,9

197

Астраханская область

108,4

217,8

Волгоградская область

91,5

243,1

Ростовская область

86,5

242,1

Республика Башкортостан

105,6

261,3

Республика Марий Эл

64,4

149,4

Республика Мордовия

59,5

151,1

Республика Татарстан

118,5

266,8

У (потребление животного масла), кг

Х (потребление растительного масла), кг

Удмуртская Республика

68,1

172,7

Чувашская Республика

55,9

149,7

Пермский край

118,9

294,5

Кировская область

53

168,3

Нижегородская область

80,2

227,2

Оренбургская область

74,4

209,6

Пензенская область

82,8

183,8

Самарская область

85,2

237,1

Саратовская область

90,5

190,3

Ульяновская область

80,3

196,7

Курганская область

68,6

194

Свердловская область

104,2

285,1

Тюменская область

173,3

455

Ханты-Мансийский авт.округ-Югра

221,4

547,8

Ямало-Ненецкий авт. округ

195,9

546,1

Челябинская область

87

230,8

Республика Алтай

63,7

154,7

Республика Бурятия

80,2

190,4

Республика Тыва

41

88

Республика Хакасия

66,9

171,8

Алтайский край

66,4

202,9

Забайкальский край

79,9

167,3

Агинский Бурятский авт. округ

73,2

162,8

Красноярский край

103,2

276,9

Иркутская область

89,5

210,3

Усть-Ордынский Бурятский авт. округ

43,7

82,7

Кемеровская область

93,3

258,4

Новосибирская область

90,5

229,9

Омская область

102,7

272,3

Томская область

107

273,5

Республика Саха (Якутия)

116,6

254,6

Камчатский край

90,8

293,2

Приморский край

73,9

208,3

Хабаровский край

83,5

294

Амурская область

56,4

185,2

Магаданская область

99

290,6

Сахалинская область

113,4

372,2

Еврейская автономная область

65,5

174

Чукотский авт. округ

108,2

285,8

Предварительный анализ статистических данных

Основные расчёты были проведены с помощью программы MathCAD (распечатки прилагаются).

(Или: Для удобства вычислений в ходе решения будем достраивать исходную таблицу данных до вспомогательной таблицы (см. расчетную таблицу ниже), округляя и занося в неё промежуточные результаты).



Поле корреляции и линия регрессии

Сначала построим поле корреляции – точки с координатами (х>i>, у>i>), и по их расположению сформулируем предположение о связи Y(потребление животного масла) и X(потребление растительного масла).

Визуальный анализ полученного поля корреляции показывает, что точки располагаются вдоль некоторой воображаемой возрастающей прямой линии, причём достаточно плотно, слабо рассеиваясь около неё.

Т.е. можно сказать, что прослеживается тесная прямая (положительная) зависимость, т.к. чем больше потребление растительного масла, тем больше потребление животного масла, которое зависит от сезонных особенностей.

Также можно заметить, что варьирование (дисперсия) потребление животного масла сильнее при малом потреблении растительного масла, а при большем потреблении – дисперсия потребления животного масла мала. Следовательно, можно предположить, что в модели будет гетероскедастичность.

Проверим наши предположения аналитически, с помощью расчётов на следующих этапах.



Основные характеристики выборки

Средние значения: и .

Стандартные отклонения: и

(где и ).

Итак, в данной выборке рассматриваются взаимозаменяемость потребления растительного масла в среднем на 225,275 кг. со стандартным отклонением 91,273 кг., потребления животного масла в среднем составила 86,02 кг. со стандартным отклонением 33,777 кг.

Линейный коэффициент корреляции:

(где ).

Это подтверждает сделанные ранее выводы.

Т.к. , то взаимозаменяемость животного масларастительного масла действительно можно считать линейной. Эта линейная зависимость положительна. Теснота связи очень сильная. А значит, линейная парная регрессионная модель вполне подойдёт для исследования и описания взаимозаменяемость животного масларастительного масла.



Этап 4 Спецификация и параметризация

Линейная парная регрессионная модель

На основе предыдущих этапов можем с большой уверенностью предположить, что взаимозаменяемость животного масла и растительного масла – линейна.

Тогда для моделирования используем линейную парную регрессионную модель для генеральной совокупности.

Для выборки модель также линейна: .

Найдём объяснённую часть модели - линейное уравнение регрессии по выборке: . Для этого нужно найти коэффициенты регрессии а>0> и а>1>, являющиеся оценками параметров >0> и >1> линейной модели. А затем оценим случайную составляющую  с помощью остатков e>i> и проверим выполнение для них предпосылок МНК.

Этап 5 Идентификация

Для построения модели используем классический подход - метод наименьших квадратов МНК.

Из системы нормальных уравнений:

находим коэффициенты регрессии а>0> и а>1>.

Все необходимые числовые значения рассчитаны ранее (см. расчетную таблицу), подставим их в систему нормальных уравнений: ему нормальных уравнений: бюджет льуплений от налога на прибыль предприятий о с увеличением размера среднемесячной зарплаты Х н

и решим её относительно а>0>, а>1>. Получим коэффициенты регрессии: а>0>=6,622 и .

Итак, уравнение регрессии имеет вид: .

Коэффициент а>0>=6,622 формально интерпретируется как взаимозаменяемость потребление животного масла, равным нулю, т.е. при х=0. Это вполне имеет смысл. Т.о., взаимозаменяемость животного масла в среднем в январе – декабре 2007 г. составляла 6,622 кг.

А коэффициент показывает, что полученная линейная связь взаимозаменяемости потребления животного масла (результативного признака Y) и растительного масла (фактора Х) – положительна, то есть при увеличении потребления растительного масла на 1 кг. от среднего значения, то потребление животного масла вырастит на 0,352 от среднего значения.

В декартовой системе координат ХОУ на поле корреляции строим и график линии регрессии по найденному уравнению.

Действительно, видим, что точки поля корреляции плотно расположены вдоль прямой регрессии. А значит, построенная линейная модель хорошо описывает стат. данные. Проведём подробный анализ её качества.



Этап 6 Верификация

Линейный коэффициент корреляции

Вычислим его по другой формуле, проверим правильность расчётов:

- совпадает с вычисленным ранее (небольшое различие – из-за округления).

Коэффициент детерминации

По свойству: .

Он показывает, что вариация результативного признака Y (потребление животного масла) на 90,6% объясняется вариацией фактора X (потребление растительного масла). То есть потребление животного масла на 78,6% обусловлены взаимозаменяемостью растительного масла. А в остальном – на 9,4% потребления животного масла обусловлено колебаниями и изменениями других факторов и условий.

Т.е., подтвердилось предположение о взаимозаменяемости потребления животного масла и растительного масла.

Средний коэффициент эластичности

Для линейной регрессии: .

Средний коэффициент эластичности показывает, что в среднем при увеличении потребления животного масла на 1% от своего среднего значения, потребление растительного масла увеличится в среднем на 0,923% от своего среднего значения.

Эластичность взаимозаменяемых товаров достаточно велика, что вполне согласуется со сложившейся ситуацией на рынке продовольствия в РФ. Чем выше продажа растительного масла, тем сильнее и заметнее растет продажа животного масла. Проверим правильность вычислений: (см. расчётную табл. - действительно).

Оценка статистической значимости коэффициентов регрессии и коэффициента корреляции

Оценим статистическую значимость полученных коэффициентов регрессии а>0> и а>1>, коэффициента корреляции r>ух> с помощью t-критерия Стьюдента на уровне значимости =0,05.

Эта проверка проводится по единой схеме, с помощью гипотез.

Выдвигается нулевая гипотеза Н>0> о случайной природе полученного коэффициента, о незначимом его отличии от нуля, то есть гипотеза Н>0> состоит в том, что коэффициент=0. Альтернативная ей гипотеза Н>1 >состоит в том, что неслучайно, то есть полученный коэффициент статистически значим. Чтобы опровергнуть гипотезу Н>0> и подтвердить гипотезу Н>1 >должно выполняться неравенство на уровне значимости и с (n2) степенями свободы, где n – количество наблюдений, уровень значимости – вероятность совершить ошибку, отвергнув гипотезу Н>0>, когда она верна.

Для а>1>: Н>0>: а>1>=0, Н>1>: .

Рассчитаем стандартную ошибку коэффициента регрессии а>1> – .

Потребуется сделать промежуточные вычисления: подставляя фактические значения х>i> в уравнение регрессии найдем смоделированные значения , затем вычислим разность между фактическими и смоделированными значениями, т.е. остатки , затем возведём остатки в квадрат е>i>2 и просуммируем; результаты представлены в расчетной таблице. Теперь подставим необходимые данные в формулу для расчёта : и t-статистики по модулю: .

Затем сравним наблюдаемое значение с табличным значением t-критерия Стьюдента. Табличное значение по таблице распределения Стьюдента на уровне значимости =0,05 с n2=55-2=53 степенями свободы: t>табл>=2,01. Наблюдаемое значение t-статистики превышает табличное значение t-критерия: 22 > 2,01, то есть выполнено неравенство , а значит, гипотеза Н>0> о случайной природе полученного коэффициента отвергается и принимается альтернативная ей гипотеза Н>1>, свидетельствующая в 95% случаев о> >статистической значимости полученного коэффициента регрессии а>1>. Т.о., можно считать, что взаимозаменяемость товаров подтвердилась и статистически установлена.

Для а>0>: Н>0>: а>0>=0, Н>1>: .

Рассчитаем стандартную ошибку коэффициента регрессии а>0>> >– . Все необходимые цифры уже имеются в расчетной таблице, подставим эти данные в формулу: , а затем рассчитаем t-статистику по модулю: .

Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости =0,05 с n2=55-2=53 степенями свободы: t>табл>=2,01,где 2<t>a>>0>< 3 (t>табл > >t>a>>0>) можно сделать вывод, что коэффициент регрессии а>0>> >можно признать статистически значимым в 90% случаев.

Для r>ух>: Н>0>: r>ух>=0, Н>1>: .

Для этого рассчитаем стандартную ошибку коэффициента корреляции r>ух>> >– : и t-статистику по модулю: .

Сравнивая рассчитанное значение с табличным значением t-критерия Стьюдента на уровне значимости =0,05 с n2=55-2=53 степенями свободы: t>табл>=2,01, можно сделать вывод о> >статистической значимости полученного коэффициента корреляции r>ух>> >в 95% случаев, предполагаемая взаимозаменяемость товаров подтвердилась.

Проверим правильность вычислений: , действительно 2222,7.

Доверительные интервалы для параметров регрессионной модели >0> и >1>

Доверительный интервал для >0> с надежностью =1-: . Выбрав уровень значимости =0,05, получаем надежность =0,95. Все необходимые цифровые значения уже рассчитаны ранее, тогда , откуда получаем (0,4312; 12,813).ыберемрительной вероятностью ров регрессионной модели TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>TYPE=RANDOM FORMAT=ARABIC>

Доверительный интервал для >1> с надежностью =1-: . При выбранной надежности =0,95: , откуда (0,32; 0,384).

Таким образом, с надежностью 95% можно утверждать, что истинное значение параметра >0> будет заключено в пределах от 0,4312 до 12,813, а истинное значение параметра >1> - в границах от 0,32 до 0,384.

Следует отметить, что доверительные интервалы узкие, т.к. значения стандартных ошибок и малы. А это подтверждает, что другие факторы оказывают несущественное влияние на покупательскую способность товаров. Основным фактором является выбранный фактор Х – замена растительным маслом. Значит, точность модели будет вполне приемлемой.

Оценка качества уравнения регрессии в целом

F-критерий Фишера

Выдвигается нулевая гипотеза Н>0> о статистической незначимости уравнения регрессии. Альтернативная ей гипотеза Н>1 >о статистической значимости. Чтобы опровергнуть гипотезу Н>0> и подтвердить гипотезу Н>1 >должно выполняться неравенство .

Рассчитаем наблюдаемое значение F-критерия (воспользуемся свойством для линейной парной регрессии): .

Табличное значение по таблице распределения Фишера на уровне значимости =0,05 с k>1>=1 и k>2>=n2=23-2=21 степенями свободы: F>табл>=4,03. Наблюдаемое значение F–критерия превышает табличное: 510,83 > 4,03, то есть выполнено неравенство , а значит, гипотеза Н>0> о случайной природе полученного уравнения регрессии отклоняется в пользу гипотезы Н>1>, свидетельствующей в 95% случаев о> >его статистической значимости и взаимозаменяемости товаров. Уравнение по данным выборки можно признать надежным и значимым, доказывающим наличие исследуемой зависимости.

Оценка аппроксимации модели

Потребуется сделать промежуточные вычисления: остатки е>i> разделим на фактические значения у>i>, полученные частные от этих делений возьмем по модулю и просуммируем; результаты представлены в расчетной таблице.

Средние ошибки аппроксимации: , . Ошибки почти совпадают и равны 25%.

В среднем смоделированные значения взаимозаменяемость животного масла отклоняются от фактических на 9-12%. Подбор модели к фактическим данным можно оценить как не точный, так как средняя ошибка аппроксимации превышает 20%.

Но, учитывая высокое качество модели и сильную линейную зависимость между Y (потребление животного масла) и Х (потребление растительного масла), эту модель можно использовать для прогнозирования с осторожностью.

Т.к. большую погрешность. Только при этом следует помнить, что в некоторых случаях прогнозы могут быть вполне точны, а в некоторых содержать немаленькую погрешность, до 12% в среднем.

Этап 7 Выводы, предложения. Прогнозирование

Прогнозирование по полученному уравнению регрессии

Полученные оценки уравнения регрессии не позволяют использовать его для качественного прогноза взаимозаменяемости товаров. Как уже говорилось, точность модели невысока. Можно её использовать лишь для того, чтобы составить приблизительное мнение о взаимозаменяемости и только в рассмотренный период.

Пусть прогнозное значение фактора х=300 кг (при этом реальное потребление животного масла в январе-феврале 2007 г. - 100 кг.) Точечный прогноз: кг.

Как видим, прогноз непригоден, сильно завышен.

Пусть прогнозное значение фактора х=90 кг (при этом реальная потребление животного масла в январе-феврале 2007 г. - 43 кг.)) Точечный прогноз: кг.

Как видим, в этом случае прогноз занижен, но более-менее соответствует действительности, особенно если учесть, что его погрешность 9-12%. Можно сделать поправку на эту погрешность, и тогда получим 32,902 кг., тоже не равно реальному значению. Реальное значение 43 кг., оказалось как раз между ними. Но как это угадать при неизвестном значении Y (продажа животного масла)?

Доверительный интервал для средней продажи животного масла при условии, при условии взаимозаменяемости растительным маслом, х=90 км с надежностью =0,95: ,

где стандартная ошибка для средних значений: .

И даже этот доверительный интервал продаж животного масла от 34,242 до 42,362 кг. не включает в себя реального значения, занижает прогноз.

Доверительный интервал для индивидуальной продажи животного масла при условии, при условии взаимозаменяемости растительным маслом, х=90 кг с надежностью =0,95: ,

где стандартная ошибка для индивидуальных значений:

.

В этот интервал продажи животного масла попало. Но интервал получился очень широким.

Таким образом, если продажа растительного масла равнялась 90 кг, то продажа животного масла в январе - феврале 2007 г. могла составлять от 15,374 до 61,23 кг. Этот интервал определяет границы, за пределами которых могут оказаться не более 5% значений цен, которые могли быть зафиксированы для взаимозаменяемых товаров.

Выводы, сделанные ранее о прогнозах по этой модели подтвердились. Ни точечный, ни интервальный прогноз не отличаются точностью, и с трудом пригодны для практического использования в отдельных случаях.

Расчетная таблица

x>i>2

y>i> x>i>

y>i>2

e>i>

e>i>2


Республика Адыгея

19154,56

7030,72

2580,64

4,5388

20,601

0,08934646

Республика Дагестан

21756,25

7493

2580,64

7,742

59,939

0,15240157

Республика Ингушетия

12769

5231,9

2143,69

0,098

0,010

0,00211663

Кабардино-Балкарская Республика

27889

10871,7

4238,01

0,306

0,094

0,00470046

Республика Калмыкия

11151,36

4804,8

2070,25

-1,7068

2,913

0,03751209

Карачаево-Черкесская Республика

27955,84

11185,68

4475,61

-1,4236

2,027

0,02127952

Республика Северная Осетия - Алания

39481,69

15121,07

5791,21

0,4644

0,216

0,0061025

Краснодарский край

63554,41

20949,51

6905,61

12,2612

150,337

0,14754753

Ставропольский край

38809

12588,3

4083,21

12,066

145,588

0,18882629

Астраханская область

47436,84

23609,52

11750,56

-25,1124

630,633

0,23166421

Волгоградская область

59097,61

22243,65

8372,25

0,6932

0,481

0,00757596

Ростовская область

58612,41

20941,65

7482,25

5,3412

28,528

0,06174798

Республика Башкортостан

68277,69

27593,28

11151,36

-7,0004

49,006

0,06629167

Республика Марий Эл

22320,36

9621,36

4147,36

-5,1892

26,928

0,08057764

Республика Мордовия

22831,21

8990,45

3540,25

0,3092

0,096

0,00519664

Республика Татарстан

71182,24

31615,8

14042,25

-17,9644

322,720

0,15159831

Удмуртская Республика

29825,29

11760,87

4637,61

-0,6876

0,473

0,01009692

Чувашская Республика

22410,09

8368,23

3124,81

3,4164

11,672

0,06111628

Пермский край

86730,25

35016,05

14137,21

-8,614

74,201

0,07244743

Кировская область

28324,89

8919,9

2809

12,8636

165,472

0,24270943

Нижегородская область

51619,84

18221,44

6432,04

6,3964

40,914

0,07975561

Оренбургская область

43932,16

15594,24

5535,36

6,0012

36,014

0,08066129

Пензенская область

33782,44

15218,64

6855,84

-11,4804

131,800

0,13865217

Самарская область

56216,41

20200,92

7259,04

4,8812

23,826

0,05729108

Саратовская область

36214,09

17222,15

8190,25

-16,8924

285,353

0,18665635

Ульяновская область

38690,89

15795,01

6448,09

-4,4396

19,710

0,05528767

Курганская область

37636

13308,4

4705,96

6,31

39,816

0,09198251

x>i>2

y>i> x>i>

y>i>2

e>i>

e>i>2


Свердловская область

81282,01

29707,42

10857,64

2,7772

7,713

0,02665259

Тюменская область

207025

78851,5

30032,89

-6,518

42,484

0,03761108

Ханты-Мансийский авт. округ-Югра

300084,84

121282,92

49017,96

-21,9524

481,908

0,09915266

Ямало-Ненецкий авт. округ

298225,21

106980,99

38376,81

2,9492

8,698

0,01505462

Челябинская область

53268,64

20079,6

7569

0,8636

0,746

0,00992644

Республика Алтай

23932,09

9854,39

4057,69

-2,6236

6,883

0,04118681

Республика Бурятия

36252,16

15270,08

6432,04

-6,5572

42,997

0,0817606

Республика Тыва

7744

3608

1681

-3,402

11,574

0,08297561

Республика Хакасия

29515,24

11493,42

4475,61

0,1956

0,038

0,00292377

Алтайский край

41168,41

13472,56

4408,96

11,6428

135,555

0,17534337

Забайкальский край

27989,29

13367,27

6384,01

-14,3884

207,026

0,1800801

Агинский Бурятский авт. округ

26503,84

11916,96

5358,24

-9,2724

85,977

0,12667213

Красноярский край

76673,61

28576,08

10650,24

0,8908

0,794

0,00863178

Иркутская область

44226,09

18821,85

8010,25

-8,8524

78,365

0,0989095

Усть-Ордынский Бурятский авт. округ

6839,29

3613,99

1909,69

-7,9676

63,483

0,18232494

Кемеровская область

66770,56

24108,72

8704,89

4,2788

18,308

0,04586066

Новосибирская область

52854,01

20805,95

8190,25

-2,9532

8,721

0,03263204

Омская область

74147,29

27965,21

10547,29

-0,2284

0,052

0,00222395

Томская область

74802,25

29264,5

11449

-4,106

16,859

0,03837383

Республика Саха (Якутия)

64821,16

29686,36

13595,56

-20,3588

414,481

0,17460377

Камчатский край

85966,24

26622,56

8244,64

19,0284

362,080

0,20956388

Приморский край

43388,89

15393,37

5461,21

6,0436

36,525

0,08178078

Хабаровский край

86436

24549

6972,25

26,61

708,092

0,31868263

Амурская область

34299,04

10445,28

3180,96

15,4124

237,542

0,2732695

Магаданская область

84448,36

28769,4

9801

9,9132

98,272

0,10013333

Сахалинская область

138532,84

42207,48

12859,56

24,2364

587,403

0,21372487

Еврейская автономная область

30276

11397

4290,25

2,37

5,617

0,03618321

Чукотский авт. округ

81681,64

30923,56

11707,24

-0,9764

0,953

0,00902403

Сумма

3256815,82

1228553,66

469716,49

0

5938,511

5,036

Проверка выполнения предпосылок МНК

Предпосылка 2. О гомоскедастичности остатков.

На Этапе 3 по полю корреляции и характеру стат. данных было сделано предположение о наличии гетероскедастичности. Проверим его с помощью теста Голдфельда-Квандта.



  1. Упорядочиваем выборку по возрастанию фактора Х.

У (продажа животного масла)

Х (продажа растительного масла)

Усть-Ордынский Бурятский авт. округ

43,7

82,7

Республика Тыва

41

88

Республика Калмыкия

45,5

105,6

Республика Ингушетия

46,3

113

Республика Адыгея

50,8

138,4

Республика Дагестан

50,8

147,5

Республика Марий Эл

64,4

149,4

Чувашская Республика

55,9

149,7

Республика Мордовия

59,5

151,1

Республика Алтай

63,7

154,7

Агинский Бурятский авт. округ

73,2

162,8

Кабардино-Балкарская Республика

65,1

167

Карачаево-Черкесская Республика

66,9

167,2

Забайкальский край

79,9

167,3

Кировская область

53

168,3

Республика Хакасия

66,9

171,8

Удмуртская Республика

68,1

172,7

Еврейская автономная область

65,5

174

Пензенская область

82,8

183,8

Амурская область

56,4

185,2

Саратовская область

90,5

190,3

Республика Бурятия

80,2

190,4

Курганская область

68,6

194

Ульяновская область

80,3

196,7

Ставропольский край

63,9

197

Республика Северная Осетия - Алания

76,1

198,7

Алтайский край

66,4

202,9

У (продажа животного масла)

Х (продажа растительного масла)

Приморский край

73,9

208,3

Оренбургская область

74,4

209,6

Иркутская область

89,5

210,3

Астраханская область

108,4

217,8

Нижегородская область

80,2

227,2

Новосибирская область

90,5

229,9

Челябинская область

87

230,8

Самарская область

85,2

237,1

Ростовская область

86,5

242,1

Волгоградская область

91,5

243,1

Краснодарский край

83,1

252,1

Республика Саха (Якутия)

116,6

254,6

Кемеровская область

93,3

258,4

Республика Башкортостан

105,6

261,3

Республика Татарстан

118,5

266,8

Омская область

102,7

272,3

Томская область

107

273,5

Красноярский край

103,2

276,9

Свердловская область

104,2

285,1

Чукотский авт. округ

108,2

285,8

Магаданская область

99

290,6

Камчатский край

90,8

293,2

Хабаровский край

83,5

294

Пермский край

118,9

294,5

Сахалинская область

113,4

372,2

Тюменская область

173,3

455

Ямало-Ненецкий авт. округ

195,9

546,1

Ханты-Мансийский авт. округ-Югра

221,4

547,8

2. Полученную упорядоченную выборку делим на 3 примерно одинаковые части . Тогда 8 первых наблюдений, соответствующих малым значениям Х (потребление растительного масла), и 8 последних, соответствующих большим значениям Х (потребление растительного масла), оставляем. А 17 центральных данных удаляем из рассмотрения.



3. Сформировались две подвыборки:

У (потребление животное масло)

Х (потребление растительное масло)

Усть-Ордынский Бурятский авт. округ

43,7

82,7

Республика Тыва

41

88

У (потребление животное масло)

Х(потребление растительное масло)

Республика Калмыкия

45,5

105,6

Республика Ингушетия

46,3

113

Республика Адыгея

50,8

138,4

Республика Дагестан

50,8

147,5

Республика Марий Эл

64,4

149,4

Чувашская Республика

55,9

149,7

Республика Мордовия

59,5

151,1

Республика Алтай

63,7

154,7

Агинский Бурятский авт. округ

73,2

162,8

Кабардино-Балкарская Республика

65,1

167

Карачаево-Черкесская Республика

66,9

167,2

Забайкальский край

79,9

167,3

Кировская область

53

168,3

Республика Хакасия

66,9

171,8

Удмуртская Республика

68,1

172,7

Еврейская автономная область

65,5

174

У (потребление животное масло)

Х(потребление растительное масло)

Краснодарский край

83,1

252,1

Республика Саха (Якутия)

116,6

254,6

Кемеровская область

93,3

258,4

Республика Башкортостан

105,6

261,3

Республика Татарстан

118,5

266,8

Омская область

102,7

272,3

Томская область

107

273,5

Красноярский край

103,2

276,9

Свердловская область

104,2

285,1

Чукотский авт. округ

108,2

285,8

Магаданская область

99

290,6

Камчатский край

90,8

293,2

Хабаровский край

83,5

294

Пермский край

118,9

294,5

Сахалинская область

113,4

372,2

Тюменская область

173,3

455

Ямало-Ненецкий авт. округ

195,9

546,1

У (потребление животное масло)

Х (потребление растительное масло)

Ханты-Мансийский авт. округ-Югра

221,4

547,8

4. По известной процедуре МНК строим уравнения линейной парной регрессии для каждой из этих частей.

Получаем для первой части: , для последней части: .

Уже видим, что коэффициенты и а>0>, и а>1> в этих уравнениях заметно отличаются. Это говорит о неоднородности вариации стат. данных, а, значит, о гетероскедастичности.

5. Находим остатки для каждого из этих уравнений, возводим их в квадрат и суммируем:

Первая часть выборки

Потребление животного масла

Потребление растительное масло

e>i>

e>i>2

Усть-Ордынский Бурятский авт. округ

43,7

82,7

39,061

-4,639

21,521

Республика Тыва

41

88

40,717

-0,283

0,080

Республика Калмыкия

45,5

105,6

46,218

0,718

0,516

Республика Ингушетия

46,3

113

48,531

2,231

4,976

Республика Адыгея

50,8

138,4

56,469

5,669

32,139

Республика Дагестан

50,8

147,5

59,313

8,513

72,475

Республика Марий Эл

64,4

149,4

59,907

-4,493

20,187

Чувашская Республика

55,9

149,7

60,001

4,101

16,817

Республика Мордовия

59,5

151,1

60,438

0,938

0,881

Республика Алтай

63,7

154,7

61,563

-2,137

4,565

Агинский Бурятский авт. округ

73,2

162,8

64,095

-9,105

82,900

Кабардино-Балкарская Республика

65,1

167

65,408

0,308

0,095

Карачаево-Черкесская Республика

66,9

167,2

65,470

-1,430

2,044

Забайкальский край

79,9

167,3

65,501

-14,399

207,319

Кировская область

53

168,3

65,814

12,814

164,198

Республика Хакасия

66,9

171,8

66,908

0,008

0,000

Удмуртская Республика

68,1

172,7

67,189

-0,911

0,830

Еврейская автономная область

65,5

174

67,595

2,095

4,391

Сумма

1060,2

2631,2

1060,2

0,000

635,932

Употребление животного масла

потребление растительного масла

e>i>

e>i>2

Краснодарский край

83,1

252,1

92,935

9,835

96,725

Республика Саха (Якутия)

116,6

254,6

93,872

-22,728

516,556

Кемеровская область

93,3

258,4

95,297

1,997

3,987

Республика Башкортостан

105,6

261,3

96,384

-9,216

84,936

Республика Татарстан

118,5

266,8

98,446

-20,054

402,168

Омская область

102,7

272,3

100,508

-2,192

4,806

Томская область

107

273,5

100,958

-6,042

36,510

Красноярский край

103,2

276,9

102,232

-0,968

0,936

Свердловская область

104,2

285,1

105,306

1,106

1,224

Чукотский авт. округ

108,2

285,8

105,569

-2,631

6,923

Магаданская область

99

290,6

107,368

8,368

70,031

Камчатский край

90,8

293,2

108,343

17,543

307,763

Хабаровский край

83,5

294

108,643

25,143

632,174

Пермский край

118,9

294,5

108,831

-10,069

101,394

Сахалинская область

113,4

372,2

137,960

24,560

603,196

Тюменская область

173,3

455

169,002

-4,298

18,477

Ямало-Ненецкий авт. округ

195,9

546,1

203,155

7,255

52,631

Ханты-Мансийский авт. округ-Югра

221,4

547,8

203,792

-17,608

310,040

Сумма

2138,6

5780,2

2138,600

0,000

3250,477

6. Находим отношение большей суммы квадратов остатков к меньшей, оно подчиняется F-распределению Фишера. В данном случае , поэтому .

7. Сравниваем его с табличным значением F-критерия Фишера на уровне значимости  с (k-1) и (k-1) степенями свободы, где k – объёмы оставшихся частей выборки.

На уровне значимости =0,05 с 17 и 17 степенями свободы табличное значение .

8. Выдвигаем гипотезу Н>0> об отсутствии гетероскедастичности (выполнении предпосылки 2). Альтернативная ей Н>1> о наличии гетероскедастичности (нарушении предпосылки 2).

9. Т.к. наблюдаемое значение превышает табличное: , то мы вынуждены принять гипотезу о наличии гетероскедастичности, подтвердив свои предположения о нарушении предпосылки 2.

Возможно, этим объясняется большая ошибка аппроксимации.

Т.к. F>e> не намного превышает F>табл>, то можно сказать, что последствия гетероскедастичности выражены несильно, и несильно сказываются на качестве модели. В данном случае эффективнее будет пренебречь этим несильным нарушением предпосылки 2, чем корректировать модель.

Предпосылка 3 О некоррелированности остатков

Т.к. выборка – пространственная, то для таких выборок нарушения этой предпосылки обычно несвойственно, т.к. не участвует фактор времени. Но чтобы убедиться в этом проверим Автокорреляцию остатков хотя бы 1-го уровня.



Полученные остатки сместим на 1 наблюдение – получим остатки 1-го уровня.

e>i>

e>i-1>

e>i>* e>i-1>

Республика Адыгея

4,5388

Республика Дагестан

7,742

4,5388

35,139

Республика Ингушетия

0,098

7,742

0,759

Кабардино-Балкарская Республика

0,306

0,098

0,030

Республика Калмыкия

-1,7068

0,306

-0,522

Карачаево-Черкесская Республика

-1,4236

-1,7068

2,430

Республика Северная Осетия - Алания

0,4644

-1,4236

-0,661

Краснодарский край

12,2612

0,4644

5,694

Ставропольский край

12,066

12,2612

147,944

Астраханская область

-25,1124

12,066

-303,006

Волгоградская область

0,6932

-25,1124

-17,408

Ростовская область

5,3412

0,6932

3,703

Республика Башкортостан

-7,0004

5,3412

-37,391

Республика Марий Эл

-5,1892

-7,0004

36,326

Республика Мордовия

0,3092

-5,1892

-1,605

Республика Татарстан

-17,9644

0,3092

-5,555

Удмуртская Республика

-0,6876

-17,9644

12,352

Чувашская Республика

3,4164

-0,6876

-2,349

Пермский край

-8,614

3,4164

-29,429

Кировская область

12,8636

-8,614

-110,807

Нижегородская область

6,3964

12,8636

82,281

Оренбургская область

6,0012

6,3964

38,386

Пензенская область

-11,4804

6,0012

-68,896

Самарская область

4,8812

-11,4804

-56,038

Саратовская область

-16,8924

4,8812

-82,455

Ульяновская область

-4,4396

-16,8924

74,995

Курганская область

6,31

-4,4396

-28,014

Свердловская область

2,7772

6,31

17,524

Тюменская область

-6,518

2,7772

-18,102

Ханты-Мансийский авт. округ-Югра

-21,9524

-6,518

143,086

Ямало-Ненецкий авт. округ

2,9492

-21,9524

-64,742

e>i>

e>i-1>

e>i>* e>i-1>

Челябинская область

0,8636

2,9492

2,547

Республика Алтай

-2,6236

0,8636

-2,266

Республика Бурятия

-6,5572

-2,6236

17,203

Республика Тыва

-3,402

-6,5572

22,308

Республика Хакасия

0,1956

-3,402

-0,665

Алтайский край

11,6428

0,1956

2,277

Забайкальский край

-14,3884

11,6428

-167,521

Агинский Бурятский авт. округ

-9,2724

-14,3884

133,415

Красноярский край

0,8908

-9,2724

-8,260

Иркутская область

-8,8524

0,8908

-7,886

Усть-Ордынский Бурятский авт. округ

-7,9676

-8,8524

70,532

Кемеровская область

4,2788

-7,9676

-34,092

Новосибирская область

-2,9532

4,2788

-12,636

Омская область

-0,2284

-2,9532

0,675

Томская область

-4,106

-0,2284

0,938

Республика Саха (Якутия)

-20,3588

-4,106

83,593

Камчатский край

19,0284

-20,3588

-387,395

Приморский край

6,0436

19,0284

115,000

Хабаровский край

26,61

6,0436

160,820

Амурская область

15,4124

26,61

410,124

Магаданская область

9,9132

15,4124

152,786

Сахалинская область

24,2364

9,9132

240,260

Еврейская автономная область

2,37

24,2364

57,440

Чукотский авт. округ

-0,9764

2,37

-2,314

-0,9764

Сумма от 2-го по 55-й

-4,3056

1,2099

620,554

Ср. знач.

-0,080

0,022

11,4917331

Станд. откл.

10,36

10,486

Чтобы оценить отсутствие или наличие Автокорреляции 1-го уровня, выясним, есть ли зависимость между остатками модели и остатками 1-го уровня. Из-за смещения останется на 1 значение меньше – 22: со 2-го по 23-е наблюдение. Вычислим коэффициент корреляции между e>i> и e>i>>-1> по его известной формуле:

(где ).

Итак, коэффициент корреляции показывает, что зависимость слабая. Т.е. автокорреляция остатков 1-го уровня слабая. И т.к. выборка пространственная, то этим небольшим нарушением предпосылки 3 можно пренебречь.

Предпосылка 4 О некоррелированности значений фактора и остатков

Построим поле корреляции между фактором Х и остатками е.

По этому расположению точек делаем вывод о том, ни закономерности, ни систематического смещения их не наблюдается.

Рассчитываем коэффициент корреляции между фактором Х и остатками е (по обычной формуле): .

Значит, фактор Х и остатки е – некоррелированы. Предпосылка 4 не нарушена.

Предпосылки 1 и 5. О нормальном распределении остатков с нулевым матем. ожиданием

По значениям остатков модели построим интервальный вариационный ряд частот. Значения остатков изменяются от min(е)= --25,1124 до max(е)=24,2364. Тогда нижней границей будет -25, а верхней 24, длина всего этого интервала 25+24=49. Его удобно разбить на 7 интервалов. Пусть будет 7 интервалов, их длины 49/7=7. Считаем сколько значений е>i> попадает в каждый из них. И выписываем интервальный вариационный ряд в виде таблицы:

Границы

[-25; -18)

[-18; -11)

[-11; -4)

[-4; 3)

[3; 10)

[10; 17)

[17; 24)

Частоты

3

3

11

19

11

5

3

Строим по нему гистограмму частот.

На этом же графике построим график кривой плотности нормального распределения (в соответствующем масштабе) с матем. ожиданием = 0 и сравним форму гистограммы и нормальной кривой.

Для данной выборки можно увидеть, что гистограмма частот остатков более-менее близка по форме к нормальной кривой. Но говорить уверенно о том, что остатки точно распределены нормально, нельзя. Возможно, при большем объёме выборки форма гистограммы была бы более понятной и однозначной.

В данном же исследовании на основании этого графика примем предположение о нормальности остатков. И будем считать, что предпосылки 1 и 5 не нарушены.



Выводы:

Высоко статистически значимые коэффициенты регрессии а>0> и а>1>, коэффициент корреляции r>ух> свидетельствуют о наличии сильной положительной взаимозаменяемости товаров. Это подтверждается и проверкой качества уравнения регрессии по F-критерию Фишера. Т.е., можно считать, что наличие взаимозаменяемости статистически доказано, направление и общая тенденция отражена уравнением регрессии верно и согласуется с состоянием рынка продовольственных товаров. Значения стандартных ошибок и для коэффициентов а>0> и а>1> малы, и доверительные интервалы для параметров модели >0> и >1> не широки, а также высокое значение коэффициента детерминации R2 указывают, что взаимозаменяемость потребления животного масла растительным маслом доказана. Влияние же других экономических (и случайных, в том числе) факторов – намного менее существенно.

Но средняя ошибка аппроксимации свидетельствует, что в среднем смоделированные данные отличаются от фактических на 9-12%. И в данном исследовании этот уровень можно признать условно приемлемым и только для изученного периода.

В данной модели обнаружена гетероскедастичность остатков. Она обусловлена рыночной ситуацией. Но она несильно нарушает предпосылку 2. Поэтому принято решение, не подвергать модель излишней корректировке, которая вряд ли улучшит её качество.

По результатам проверки остальных предпосылок МНК можно считать, что они выполнены, или, по крайней мере, их негативные последствия минимальны. Для более однозначного ответа требуется увеличение выборки.

Всё это означает, что применение полученного уравнения на другие периоды или другие регионы, и пр. для качественного и реального прогнозирования возможно только с определёнными поправками. И было бы целесообразным для повышения прогностической силы и практической ценности этой модели добавление в нее других факторов, изучение данных и за другие периоды.

Рекомендации по улучшению качества этой модели:

Увеличить выборку для повышения точности.

Добавить в модель и другие факторы (напр., цены на эти продукты, национальные предпочтения, удаленность от производства, сезонные особенности употребления этих продуктов и т. д.), чтобы улучшить аппроксимацию модели.

Внести корректировку для периода времени, чтобы модель была применима не только для изученного периода, ни и для других лет.

Из-за гетероскедастичности можно построить 5 модели: для каждого федерального округа.

1