Алифатические нитросоединения

Алифатические нитросоединения

Нитроалканы имеют общую формулу C>n>H>2>>n>>+1>NO>2> или R-NO>2>. Они также изомерны алкилнитритам (эфирам азотистой кислоты) с общей формулой R-ONO.

Изомерия нитроалканов связана с изомерией углеродного скелета. Различают первичные RCH>2>NO>2>, вторичные R>2>CHNO>2> и третичные R>3>CNO>2> нитроалканы. Нитроалканы называют по углеводороду с приставкой нитро-. По систематической номенклатуре положение нитрогруппы обозначается цифрой.

Способы получения нитроалканов

1. Нитрование алканов (Коновалов, Хэсс).

Алканы окисляются концентрированной азотной кислотой или смесью азотной и серной кислот. Нитрование протекает только под действием разбавленной азотной кислоты пр нагревании (М.И. Коновалов, 1888 г.):

R-H + HO-NO>2> R-NO>2> + H>2>O

Скорость реакции невелика и выходы низкие. Лучшие результаты получаются с алканами, содержащими третичные углеродные атомы. Реакция сопровождается образованием полинитросоединений и окислительными процессами.

практическое значение получили следующие методы нитрования алканов: 1) в газовой фазе при 350-400 оС с помощью 40-70%- ной HNO>3>> >(нитрование по Хэссу, 1936 г.); 2) в жидкой фазе при 100-200оС с 50-70%- ной HNO>3>; 3)в жидкой или газовой фазе тетраоксидом или диоксидом азота. В промышленности получило применение нитрование парами азотной кислоты при 250-500оС - парофазное нитрование. Выбор температуры процесса зависит от дины углеродной цепи и строения углеводорода: изобутан реагирует уже при 150оС, тогда как метан - при 370. Реакция сопровождается крекингом углеводорода, в результате чего образуются мононитроалканы с углеродной цепью различной длины (деструктивное нитрование).

На реакцию нитрования расходуется около 40% азотной кислоты, остальная ее часть действует как окислитель. Поэтому наряду с нитросоединениями образуются также спирты, кетоны и кислоты. Кроме того, образуются и непредельные углеводороды.

Реакция нитрования - радикальный процесс.

Звено цепи:

RH + NO>2> R

R+ NO>2> R NO>2>

RH + Cl R

R+ NO R NO

2. Реакция Мейера.

CH>3>Br + AgNO>2> CH>3>NO>2> + AgBr реакция Мейера

CH>3>CH>2>Br + NaNO>2> CH>3>CH>2>NO>2> + NaBr реакция Корнблюма

Реакция протекает по механизму S>N>2. В качестве побочных продуктов образуются эфиры азотистой кислоты (механизм S>N>1).

    Окисление аминов.

Ниросоединения также могут быть получены окислением аминов:

Нитросоединениям может быть придана следующая октетная формула:

или

Химические свойства

    Образование солей.

Первичные и вторичные нитросоединения растворимы в щелочах с образованием солей. Это объясняется тем, что водородные атомы пр углероде, связанном непосредственно с нитрогруппой, под влиянием последней активируются, и в щелочной среде нитросоединения перегруппировываются в аци-нитро-форму (кислотную):

Таким образом, нитроалканы являются таутомерными веществами, существующими в нитро- и аци-нитро-формах.

Если щелочные растворы нитросоединений обработать минеральной кислотой, то происходит медленный обратный сдвиг равновесия:

Поэтому нитросоединения относят к псевдокислотам. Для псевдокислот характерно, что сами они нейтральны, не обладают электропроводностью, но образуют нейтральные соли щелочных металлов. «Нейтрализация» нитросоединений основаниями (образование нейтральных солей) происходит медленно, а истинных кислот - мгновенно.

2. Образование аминов (восстановление) - см. Лекцию №32.

3. Реакции с азотистой кислотой.

Активность водородных атомов у углерода, непосредственно связанного с нитрогруппой, проявляется и в ряде других реакций, например, в реакциях с азотистой кислотой. Первичные и вторичные нитросоединения реагируют с азотистой кислотой, а третичные не реагируют:

Щелочные соли нитроловых кислот в растворе имеют красный цвет. Псевдонитролы в растворах и расплавах окрашены в синий или зеленовато-синий цвет.

    Конденсация с альдегидами.

Первичные и вторичные нитросоединения конденсируются с альдегидами, образуя нитроспирты:

Нитрометан с формальдегидом дает триметилолнитрометан NO>2>-C(CH>2>OH)>3>. При восстановлении последнего получается аминоспирт NH>2>-C(CH>2>OH)>3>, используемый в производстве моющих средств и эмульгаторов. Азотнокислые эфиры нитроспиртов, например, NO>2>-C(CH>2>ONO>2>)>3>, являются ценными взрывчатыми веществами.

    Образование альдегидов и кетонов.

Аци-формы первичных и вторичных спиртов нитросоединений в водных растворах при действии минеральных кислот образуют альдегиды или кетоны:

    Образование карбоновых кислот.

Первичные нитросоединения при нагревании 85%-ной серной кислоты переходят в карбоновые кислоты с отщеплением гидроксиламина. Реакция может служить промышленным способом получения гидроксиламина:

Нитропарафины используют в технике как растворители, для производства альдегидов, кислот, взрывчатых веществ, в реактивной технике, резиновой промышленности (вулканизаторы), при изготовлении пластмасс и др.

Ароматические нитросоединения

Получение ароматических нитросоединений

    Нитросоединения с нитрогруппой в ядре получают нитрованием ароматических углеводородов смесью азотной и серной кислот (нитрующая смесь):

C>6>H>6> + HONO>2>  C>6>H>5>NO>2> + H>2>O

При нитровании бензола вторая нитрогруппа вступает в м-положение. Введение ее достигается применением более жестких условий нитрования - более высокая температура, концентрированные кислоты. Третья группа вводится с еще большим трудом в м-положение:

При наличии в ядре заместителей электронодонорных заместителей, удается ввести три нитрогруппы в обычных условиях. Так, толуол нитруется по следующей схеме:

При нитровании гомологов бензола, содержащих два заместителя, сказывается стерический эффект. Если эти заместители находятся в п-положении, то нитрогруппа становится рядом с меньшим заместителем:

Скорость реакции нитрования зависит от субстрата и состава нитрующей смеси; для каждого соединения существует оптимальный состав. Так, при нитровании нитробензола оптимальный результат достигается при использовании 90%- ной серной кислоты. Снижение ее концентрации до 80% уменьшает скорость реакции в 3000 раз.

В настоящее время установлено, что в растворе азотной кислоты в серной имеет место равновесие:

2 H>2>SO>4> + HNO>3> NO+>2> + H>3>O+ + 2 HSO->4>

Чистая азотная кислота в условиях нитрования диссоциирует по схеме:

2 HONO>2> NO+>2> + NO->3> + H>2>O

Сам процесс нитрования с участием нитроний-катиона NO+>2> представляет собой замещение водорода:

2. Нитросоединения с нитрогруппой в боковой цепи получают теми же методами, что и нитросоединения алифатического ряда:

1. Нитрование гомологов бензола разбавленной азотной кислотой (реакция Коновалова).

Ar-CH>3> + HONO>2> Ar-CH>2>NO>2> + H>2>O

Реакция галогенпроизводных с галогеном в боковой цепи с нитритом серебра (реакция Мейра)

C>6>H>5>-CH>2>Cl + AgNO>2> C>6>H>5>-CH>2>NO>2> + AgCl

Химические свойства

Химические свойства нитросоединений ароматического ряда обусловлены присутствием в молекулах нитрогруппы и ароматического ядра и их взаимного влияния.

    Восстановление.

Впервые нитробензол был восстановлен в анилин с помощью сернистого аммония в 1842 г. Н.Н. Зининым. Это открытие сыграло важнейшую роль в развитии химической технологии, особенно в области химии красителей, медикаментов и фотохимикатов. Ароматические нитросоединения в зависимости от условий восстановления дают различные продукты. Ароматические амины являются конечными продуктами восстановления. Обычно их получают в кислой среде.

В нейтральной, щелочной и слабокислой средах можно получить различные промежуточные продукты восстановления. Ниже приведена схема восстановления нитросоединений:

В нейтральной и кислой средах идут реакции 1-4, причем в кислой среде не удается выделить промежуточные продукты. В нейтральной среде можно выделить нитрозобензол и фенилгидроксиламин. В щелочной среде нитро- и нитрозобензолы конденсируются с фенилгидразином и идут реакции 5-9. Различные продукты восстановления можно получать, пользуясь методом электролитического восстановления. В зависимости от потенциала на электродах можно получать различные вещества.

2. Реакции замещения.

Нитрогруппа в реакциях электрофильного замещения направляет заместитель в мета-положение причем реакционная способность бензольного кольца уменьшается:

В реакциях нуклеофильного замещения нитрогруппа направляет заместители в орто- и пара-положения. Так, при нагревании нитробензола с порошкообразным KOH получается смесь о- и п-нитрофенолятов:

Благодаря сильно выраженному электроноакцепторному характеру нитрогруппа оказывает значительное влияние на атомы и группы, находящиеся по отношению к ней в о- и п-положениях. Так, в случае о- и п-нитрохлорбензолов галоген под влиянием нитрогруппы приобретает высокую подвижность, и легко замещается на гидроксил, алкоксил или аминогруппу: