Очистка от пестицидов
Министерство общего и профессионального образования Российской Федерации
САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им.Н.Г.Чернышевского
Кафедра технической химии и катализа
Р Е Ф Е Р А Т
ОЧИСТКА ОТ ПЕСТИЦИДОВ
Выполнил:
Саратов -1998-
С О Д Е Р Ж А Н И Е
Введение......................................3
1.Пути поступления пестицидов.................4
2.Основные классы пестицидных препаратов......5
3.Основные методы анализа обьектов окружающей среды содержащих пестициды.................11
4.Химические основы обезвреживания природных обьектов от пестицидов.....................
5.Технологические схемы обезвреживания пестицидов ...............................
Заключение...................................
Список литературы............................
Приложение...................................
1.4
В В Е Д Е Н И Е
Пестициды (ядохимикаты) - химические препараты для защиты сельскохозяйственной продукции, растений, для уничтожения паразитов у животных, для борьбы с переносчиками опасных заболеваний и т.п.
За последние десятилетия число различных типов пестицидов сильно возросло, только в США их количество достигло 900. По данным А.В. Яблокова (1988), в нашей стране в 1986г. было применено пестицидов в среднем около 2 кг на 1 га (примерно на 87% пашни) или около 1,4 кг на душу населения, а в США 1,6 кг на 1 га (на 61% пашни) или 1,5 кг на душу населения.
Пестициды распространяются на большие пространства, весьма удаленные от мест их применения. Многие из них могут сохраняться в почвах достаточно долго (период полураспада ДДТ в воде оценивается в 10 лет, а для диэлдрина он превышает 20 лет). При использовании даже наименее летучих компонентов более 50% активных веществ в момент воздействия переходят прямо в атмосферу, а для таких пестицидов, как ДДТ и диэлдрин, характерна дистилляция с парами воды на земной поверхности. Эта часть пестицидов, не достигших растений, подхватывается ветром и осаждается в районах суши или океана, весьма удаленных от зон применения вещества. Они в конечном итоге попадают в различные экосистемы, включая океан, пресноводные водоемы, наземные биомы и др., в значительных количествах накапливаются в почвах и увеличивают свои концентрации при движении по трофическим цепям.
Пестициды широко используются в сельском и лесном хозяйстве, для регулирования роста растений и зашиты их от различных вредителей и болезней, удаления сорной растительности, сохранения запаса зерна, защиты животных от экопаразитов, уничтожения переносчиков инфекционных заболеваний человека и животных, а также в ряде отраслей промышленности для борьбы с вредными организмами, нарушающими течение технологических процессов.
Наиболее распространенными группами пестицидов являются: гербециды, применяющиеся для борьбы с сорными растениями, главным образом в злаковых культурах; инсекцициды - для уничтожения вредных насекомых в культурах хлопчатника, кукурузы, риса и др.; фунгициды - для борьбы с болезнями растений.
В результате циркуляции пестицидов в окружающей среде они присутствуют в атмосфере, почве, растениях и воде.
.5 1. Пути поступления пистицидов
Поступление пестицидов в почву помимо прямого внесения их или с протравленным ими зерном, связано с поливом растений и стоком осадков с поверхности растений, сносом препаратов при авиаобработке полей, лесных угодий и т.д.
В результуте протекающих в почве химических и биологических процессов содержание пестицидов в ней обычно уменьшается, тем не менее остаточные количества их колеблется от сотых долей до десятков микрограммов в 1 кг.
Возможность накопления пестицидов в почве определяется условиями их применения (нормами расхода, кратностью обработки), стабильностью и растворимостью препаратов, типом почвы, ее рН, температурой и влажностью, условиями вымывания, инактивирующим действием растений, глубиной проникновения и т.д.
Наименее устойчивы пестициды в опесчаниных почвах, наиболее устойчивы в почвах с большим содержанием глины, органических веществ, ионов железа, алюминия и марганца.
Находясь в почве, пестициды подвергаются действию абиотических факторов (света, воздуха, воды), существенную роль в их разложении играют микроорганизмы. В процессах гидролиза, окисления, демитилирования и других пестициды разлагаются, иногда с образованием токсичных продуктов.
Для предотвращения накопления пестицидов в почве прибегают к увеличению интервала времени между их введением и сбором урожая, к уменьшению кратности обработки, снижению расходов препаратов путем добавки утежилителей, препятствующих их сносу за зону обработки, упорядочиванию хранения и транспортировки пестицидов. Все это уменьшает, однако не исключает возможность загрезнения почвы.
Загрезнение поверхности водоемов происходит несколькими путями. Пестициды могут попадать в воду при смыве с почвенного покрова и растений, при сносе волны препарата, в процессе аэрообработки, при неправильной технологии опрыскивания и опыления, за счет поступления загрезненных ими грунтовых вод в районах орошаемого земледелия, при попадании воды, фильтрующихся из оросительных систем, и наконец в результате вымывания пестицидов из почвы.
Масштаб выноса пестицидов определяется количеством, способом и временем внесения препаратов в почву, их растворимостью, устойчивостью к разложению, способностью сорбироваться почвой и мигри-
ровать по ее профилю, интенсивностью эрозионных процессов, типом
почв, рельефом местности, обьемом и интенсивностью выпадения
осадков и т.д.
Помимо описанных путей загрезнения, по существу не поддающихся регулированию, пестициды могут поступать в водоемы целенаправленно - для уничтожени сорной растительности и насекомых, а также со сточными водами производящих или использующих их предприятий, в частности тепличных хозяйств.
2. Основные классы пестицидных препаратов
В качестве пестицидов в народном хозяйстве используются разнообразные классы органических веществ. Наиболее известными из них являются следующие;фосфороорганические соединения, производные карбаминовых кислот, нитропроизводные фенола, производные мочевины, хлорорганические соединения, арилоксиалкилкарбоновые кислоты и их производные, азотсодержащие гетероциклические соединения.
2.1 Фосфорорганические соединения
Фосфороорганические соединения широко используют в народном хозяйстве в качестве активных инсектецидов, акарицидов, дефолиантов, гербецидов и др. Этому способствует не только широкий чпектр пестицидного действия, но и относительно малая стабильность этих соединений во внешней среде.
Несмотря на низкую стабильность фосфороорганических пестицидов, время пребывания их в воде может оказатся вполне достаточным для поступления неразложившихся препаратов в обрабатываемую из водосточных сооружений воду. Лимитируются фосфороорганические пестициды в воде по органолептическому признаку вредности, и значения ПДК состовляют 0,1-0,003 мг/дм3, что во много раз ниже количеств, допускаемых по токсикологическому признаку. В болишинстве случаев фосфороорганические пестициды представляют собой жидкие или кристаллические вещества, хорошо растворимые в воде и многих органических растворителях. Все они летучи и термически устойчивы.
Общее строение фосфорорганических веществ, обладающих биологической активностью и используемых в качестве пестицидов, выг-
лядит следующим образом:
RO O(S)
PO-X
RO
Нарушение такой структуры обычно ведет к потере биологической активности. В качестве наиболее известных соединений этого ряда можно представить следующие:
Паратион
Параоксон
Диазинон
Актеллик
2.2 Производные карбаминовых кислот
Производные карбаминовых кислот по маштабам производства в ряду пестицидов занимают второе место, уступая только фосфороорганическим соединениям. Карбамины являются биологически активными веществами, отрицательно влияющими на здоровье человека. Некоторые эфиры арилалкилкарбаминовых кислот обладают выраженными эмбриотоксичными и мутагенными свойствами для теплокровных животных. Присутствуя в водоемах, карбаматы ухудшают качество воды, в связи с чем содержание их санитарными нормами ограничевается до 0,1 мг/дм3.
В соответствии с химическим строением производных карбаминовых кислот (карбаматов) их подразделяют на несколько групп:
1. Ариловые эфиры N-алкилкарбаминовой кислоты
O H(Alk) Ar-O-C-N
Alk
2. Алкиловые эфиры N-арилкарбаминовой кислоты
O H(Ar)
Alk-O-C-N
Ar
3. Эфиры тиолкарбаминовой кислоты
O H(R>1>) R-S-C-N
R>1>
4.Эфиры дитиокарбаминовых кислот
S H(R>1>) R-S-C-N
R>1>
5.Соли замещенных дитиокарбаминовых кислот.
Несмотря на схожесть строения, отдельные группы карбаматов существенно различаются между собой как по химическим, так и по пестицидным свойствам.
2.3 Производные нитрофенола
Впервые нитрофенолы были предложены для борьбыс вредными на-
секомыми еще в прошлом столетии, но своего значения в качестве
химических средств защиты растений не утратили и до настоящего
времени. Пестициды этого класса используют в качестве селективных
контактных гербецидов, инсектецидов, фунгицидов и акарицидов.
Всельсвохозяйственной практике широко применяют 2,4-динитрофенол (ДНФ), 2-метил-4,6-динитрофенол (ДНОК), 2,4-динитро-6-втор-бутилфенол (диносеб) и другие препараты. Используют также и эфиры динитрофенолов: акрекс [(о-изопропил-о-(2,4-динитро-6-изобутилфенол) карбонат], каратан (2,4-динитро-6-втор-октилфенилкротонат), нитрофен (2,4-дихлор-4-нитродифениловый эфир), аретит (6-втор-бутил-2,4-динитрофенола ацетат) и др.
Большинство производных нитрофенолов токсичны для гидробионитов, теплокровных животных и человека. Характеризуются они политропным воздействием, вызывая изменения центральной нервной системы, печени, почек, являются также аллергенами. Динитрофенолы нарушают обмен веществ в клетке, в частности разобщают процессы окислительного фосфолирования с потерей богатых энергии соединений АТФ и др. Эфиры нитрофенолов значительно менее токсичны, нежели соответствующие свободные нитрофенолы. Так ЛД>50> для диносеба и акрекса равны 25-50 и 119-142 мг/кг. Нормируются нитропроизводные фенолов в водоемах хозяйственно-бытового назначения по санитарно-токсикологическому признаку вредности. Значение их ПДК состовляют от 0,03 до 0,2 мг/дм3.
Во внешней среде производные нитрофенола под влиянием различных ферментативных систем быстро превращаются в разнообразные метаболиты, токсичность которых во много раз ниже токсичности исходных препаратов.
2.4 Мочевина и ее производные
Мочевина и ее производные достаточно широко используется в сельском хозяйстве в качестве азотного удобрения и химических средств защиты растений. Мочевина малотоксична и не накапливается в организме, однако способность влиять на качественные показатели воды вынуждает ограничивать ее содержание в воде после обработки. Предельно допустимая концентрация мочевины нормируемая по органолептическому признаку, состовляет 10 мг/дм3.
Систематическое исследование пестицидных свойств производных
мочевины показало, что инсектецидные и фунгицидные свойства их
выражены слабо. Большинство соединений этого класса обладают высокой гербецидной активностью, некоторые из них применяют в качестве альгицидов и арборицидов.
Важнейшую группу этого класса соединений состовляют
N-арил-N,N-диалкилмочевины, содержащие в фенолтном остатке не более двух функциональных групп. По своей практической значимости они занимают ведущее место среди гербецидных препаратов, используемых в народном хозяйстве.
Гербецидные мочевины обладают малой и средней токсичностью (ЛД>50>>1000 мг/кг), кумулятивные свойства их выражены слабо, механизм токсического действия обусловлен ингибированием фотосинтеза и других процессов, связанных с превращением энергии в растениях.
2.5 Хлорорганические соединения
Хлорорганические пестициды (ХОП) применяют в сельском хозяйстве в качестве активных инсектецидов, акарицидов и фумигантов в борьбе с вредителями зерновых и технических культур. Их используют также для обработки семян, фумигации почв, помещений складов и тепличных хозяйств. По химической природе соединения этого класса представляют собой хлорпроизводные ароматических углеводородов (гексахлорбензол, ДДТ и его аналоги, метоксихлор и др.), циклопарафинов (гексахлорциклогексан и его аналоги), терпенов (полихлоркамфен, полихлорпинен и др.). Широкое применение всельском хозяйстве и промышленности получили полициклические инсектициды - производные би-,три- и тетрациклических углеводородов (хлордан, гептахлор, дилор, альдрин, дильдрин и др.). Больштнство хоп плохо рпстворимы в воде, но хорошо в орагнических растворителях, в том числе в жирах. Согласно гигиенической классификации их относят к стойким и очень стойким пестицидам.
2.6 Арилоксиалкилкарбоновые кислоты и их производные
Широко используют в качестве гербецидов, альгицидов и регуляторов роста растений арилоксиалкилкарбоновые кислоты (ААКК), среди которых большое распространение получили такие препараты, как 2,4-дихлорфеноксиуксусная кислота (2.4-Д) и ее производные,
2,4-дихлорфеноксипропионовая кислота (2,4-ДП) и ее производные, 2-метил-4-хлорфеноксиуксусная кислота (2М-4Х), 2,4,5-трихлорфеноксиуксусная кислота (2,4,5-Т) и ее производные и др.
Изучена их биологическая активность и установлена взаимосвязь между строением кислот и их пестицидной активностью. Отмечено резкое повышение физиологической активности феноксиуксусной кислоты при ведении в ее молекулу атомов галогена, положение которых оказывает существенное влияние на этот показатель.
Многие промышленные препараты гербецидов представляют собой не свободные ААКК, а их соли (с металлами или аминами) или эфиры. Последние являются более сильными гербецидами, чем соответствующие свободные кислоты и их соли. Из большого числа эфиров 2,4-Д практическое применение нашли этиловый, бутиловый, амиловый, гептиловый, октиловый, полипропилен- и полиэтиленгликолевые и др.
Больштнство гербецидов группы ААКК среднетоксичны, их ЛД>50 >для крыс находится в пределах от 375 до 100 мг/кг. Действие этих пестицидов на качество воды проявляется главным образом в ухудшении ее вкуса и запаха, связанных с присутствием в товарных препаратах примесей фенолов. Предельно допустимые концентрации ААКК составляют до 1 мг/дм3.
2.7 Азотсодержащие гетероциклические соединения
К этой группе пестицидов относят многие органические вещества, из которых наиболее широкое применение получили пяти- и шестичленные гетероциклы с одним, двумя и тремя атомами азота в цикле. Это производные пиридина, пирадазина и пиримидина, симм-триазина и др. В ряде случаев гетероциклические остатки входят в состав препаратов и других классов пестицидов (диазинос, сайфос и др.).
Широкое применение в сельском хозяйстве из пестицидов - производных пиридина получили пиклорам (3,5,6-трихлор-4-аминопиколиновая кислота), дикват (1,1-этилен-2,2дипиридилий бромид), паракват (1,1-диметил-4,4-дипиридилий дихлорид) и др. Пиклорам обладает высокими арборицидными свойствами; дикват и паракват используют в качестве десиктантов, гербицидов сплошного действия, водных гербецидов.
В отличие от малотоксичного пиклорама (ЛД>50>=8200 мг/кг),
дикват и паракват относятся к средне- и высокотоксичным препаратам, значение ЛД>50> соответственно равны 231 и 57 мг/кг.
Одну из основных групп используемых гербецидов составляют производные симм-триазина. Гербециды этой группы прредставляют собой диамино-симм-триазины, у которых третий заместитель, связанный с гетероциклическим кольцом, является атомом хлора, метокси- или метилтиогруппой. Общая формула симм-триазинов выглядит следующим образом:
где Х-Cl,OCH>3>SCH>3>;R-R-H,Alk.
симм-Триазины малотоксичны для теплокровных животных, при пероральном введении их острая токсичность для крыс состовляет 1400-5000 мг/кг.
3.Основные методы анализа обьектов окружающей среды содержащих пестициды
4.Химические основы обезвреживания природных обьектов от пестицидов
При очистки вод от пестицидов наиболее полно исследованны и используются несколько способов: щелочной и кислотный гидролиз, деструктивное окисление пестицидов и адсорбционные методы.
4.1 Гидролиз пестицидов
Одним из путей очистки воды от пестицидов - эфиров фосфорных
кислот являтся гидролитическое расщепление. Возможность использования химического гидролиза в качестве метода очистки от ФОПопределяется главным образом характером образующихся продуктов превращения, степенью устойчивости и токсичности, их влиянием на органолептику воды. Максимальная устойчивость ФОП наблюдается в кислой среде. С повышением рН скорость гидролиза возростает. Исключение состовляют диазинон, диазоксон, актеллик, для которых характерна высокая стабильность в нейиральной среде.
Изучение кинетиеи и продуктов гидролиза позволило установить, что щелочной гидролиз ФОП обычно протекает с разрывом связи фосфор-кислород (P-O(S)), в то время, как при кислотном гидролизе происходит преймущественное расщепление углерод-кислородного фрагмента (O(S)-R)).
Для производных карбаминовых кислот - карбаматов наличие эфирной связи обуславливает их гидролиз, продуктом которого является неустойчивая карбаминовая кислота и оксисоединение. Схема гидролиза фенилкарбаматов на примере хлорпроизводного изопропил-N-фенилкарбамата (ИФК) приведена ниже:(стр37)
Образующиеся при гидролизе неустойчивая 3-хлорфенилкарбаминовая кислота быстро разлагается на 3-хлоранилин и оксид углерода (IV). Показано, что скорость гидролитического расщепления карбаматов и характер образующихся соединений определяется в основном химической природой вещества.
В случае гидролиза сложных эфиров динитрофенола кинетика реакций была подробно изучена на примере наиболее часто используемых представителях этого ряда - акрекса и каратана. Их ПДК, определяемый по санитарному признаку 0,5-0,2 мг/дм3. Показано, что в щелочной среде гидролиз протекает с заметной скоростью (время полураспада 9-17 суток), и поэтому он может быть применен в качест-
ве метода, сокращающего и время и дозы реагентов на следующих
этапах очистки воды.
Гидроли мочевины заметно протекает в кислой или щелочной среде при нагревании, в результате которого мочевина разлагается с образованием аммиака и диоксида углерода. Процесс этот рекомендовандля очистки от мочевины сточных вод.
4.2 Диструктивное окисление пестицидов
Как правило деструктивное окисление соединений связано с участием в реакции сильных окислителей, таких как хлор, озон, перекись водорода и др. Выбор данных соединений обусловлен широтой их использования в народном хозяйстве. Их действие на органические вещества и в частности на пестициды неоднозначно, однако можно выделить некоторые основные моменты позволяющие при выборе технологической схемы предпочтительней использовать тот или иной окислитель сообразуясь как с финансовыми, так и с научно техническими возможностями.
В результате проведенных исследований было установленно, что хлор в качестве реагента для обезвреживания ФОП в воде не представляет интереса, так как с одними соединениями он не реагирует (хлорофос), с другими (метафос, карбофос) может образовывать токсичные соединения.
Исследования выполненные по использованию озона для очистки воды от ФОП показали, что озон является перспективным реагентом для диструкции ФОП, при правильном подборе режима разложения.
Установленно, что другие окислители: перманганат калия и диоксид марганца являются малоэффективными.
Исследования проведенные по деструктивному окислению производных карбаминовых кислот показали, что хлор является малоэффективным реагентом, с больнинством пестицидов он образует хлорпроизводные этого соединения, что отражается в резком, неприятном запахе.
Наличие в молекуле карбаматов ароматического ядра, атомов серы и азота позволяет ожидать глубокой диструкцииэтих соединений под действием озона. Исследования показали, что озон является эффективным окислителем для обезвреживания всех групп карбаминовых пестицидов. В большинстве случае окисление протекает с высокой
скоростью, с полной или частичной минерализацией исходных веществ, без образования токсикологически опасных продуктов деструкции.
4.3 Адсорбция пестицидов
Процесс адсорбции на неполярных (активные угли) и полярных (гидроксиды алюминия и железа, глины и т.д.) сорбентах в ряде случаев нашол применение для очистки природных и сточных вод от пестицидов.
Сведения о возможности применения этого метода для очистки для ФОП протеворечивы. Показано, что надежное удаление ФОП из воды достигается обработкой ее активным углем.
Большое распространение для очистке сточных вод от нитросоединений получили сорбционные процессы, особенно на неполярных сорбентах - саже, угле, графите.
Наиболее действенным способом очистки воды от пестицидов хлорорганического ряда является адсорбция активированным (активным) углем.
5.Технологические схемы обезвреживания пестицидов
5.1 Обезвреживание пестицидов при очистке природной воды
Выбор технологических схем обезвреживания воды, загрязненной пестицидами, определяется многими факторами: свойствами присутствующих препаратов, глубиной очистки, производительностью очистных сооружений, местными условиями и т.д.
Требуемая степень очистки может быть достигнута изменением режима процесса, используемого на сооружениях для удаления других нежелательных в воде веществ, или дополнением существующей технологии новыми методами, т.е. созданием комплексной схемы, удовлетворяющей всем предъявляемым к качеству воды требованиям.
Для осветвления и обесцвечивания воды обычно используют процесс коагуляции, для обезвреживания - окисление хлором. Описанная схема дает положительные результаты только в случае относительно незагрязненных водоисточников, в то же время присутствие в водоемах пестицидов и других нежелательных в питьевой воде соединений
достаточно реально. Как правило, в этом случае традиционная схема
не обеспечивает или только частично предохраняет от попадания
загрязнений в обработанную воду.
Многочисленные работы показали, что перспективным агентом, обеспечивающим деструкцию пестицидов, является озон. Применение его облегчается имеющимся опытом эксплутации озонаторных станций в составе очистных сооружений водопроводов.
Как правило расход озона для полного обезвреживания воды невелик. В случае образования токсичных продуктов реакции положительный эффект инактивации достигается повышением дозы озона или увеличением времени контакта обрабатываемой воды с озоно-воздушой смесью.
Использование озона, в качестве деструктора пестицидов одновременно обеспечивает, осветление и обеззараживание воды, что значительно снижает расход реагентов по сравнению с традиционной технологией оьработки. Место ввода озона по технологической схеме обработки воды, забтраемой из поверхностных водоисточников, видно из рисунка:
Согласно первому варианту воду обрабатывают хлором (8 мг/дм3), коагулянтом (30-40 мг/дм3) иозоном (10-20 мг/дм3), продолжительность контакта воды с озоно-воздушной смесью состовляет 10 минут. Содержание пестицидов в обработанной воде не превышает ПДК (0.01 мг/дм3).
По второму варианту озон вводт в конце технологической схе-
мы, после обработки воды хлором (5 мг/дм3), коагулянтом (80
мг/дм3), отстаивании и фильтровании. Это обеспечивает деструкцию
ФОП при меньшем расходе окислителя.
Список литературы
1. Шевченко М.А. и др. Очистка природных вод отпестицидов -
Л.:Химия, 1989.-184 с.: ил.
2. Врочинский и др. Гидробиологическая миграция пестицидов -
М., Изд-во Моск. ун-та, 1980.-120 с.: ил.
1
ПРИЛОЖЕНИЕ
Приложение 1
Токсикологическая классификация пестицидов (Медведь и др
1968)
1. По токсичности при введении в желудок экспериментальным животным:
сильнодействующие ядовитые вещества - ЛД>50><50 мг/кг;
высокотоксичные ЛД>50> - 50-200 мг/кг;
среднетоксичные - ЛД>50> - 200-1000 мг/кг;
малотоксичные - ЛД>50> - > 1000 мг/кг;
2. По токсичности при поступлении через кожные покровы (кожнорезорбцивная токсичность):
резко выраженная - ЛД>50><300 мг/кг, кожнооральный коэффициент < 1;
выраженная - ЛД>50> - 300-1000 мг/кг, кожнооральный коэффициент - 1-3;
слабо выраженная - ЛД>50>>1000 мг/кг, кожнооральный коэффициент - >3.
3. По степени летучести:
очень опасное вещество - насыщенная концентрация более или равна токсической;
опасное - насыщенная концентрация больше пороговой;
малоопасное - насыщенная концентрация не оказывает порогового действия.
4. По кумуляции:
вещества, обладающие сверхкомуляцией - коэффициент кумуляции < 1;
выраженной - коэффициент кумуляции 1-3;
умеренной - коэффициент кумуляции 3-5;
слабовыраженной - коэффициент кумуляции >5.
5. По стойкости:
очень стойкие вещества - время разложения на нетоксичные компоненты свыше 2 лет;
стойкие - время разложения на нетоксичные компоненты - 0,5-2 года;
умеренно стойкие - время разложения на нетоксичные компоненты - 1-6 месяцев;
малостойкие - время разложения на нетоксичные компоненты - в течении месяца.
Плиложение 2 Классификация пестицидов по отдаленным последствиям действия
По эмбриотоксичности
I. Избирательная эмьриотоксичность - проявляется в дозах, не токсичных для материнского организма.
II. Общая эмбриотоксичность - проявляется наряду с токсическим эффектом в материнском организме.
III. Отсутствие эмбриотоксичности - не проявляется при наличии токсического эффекта в материнском организме.
По бластомогенному действию
I. Вещества, канцерогенные для животных (известно возникновение рака у людей).
II. Сильные канцерогены для животных - вызывают в короткие сроки большой прцент опухолей у животных, бластомогенность для человека еще не доказана, но вероятна.
III. Слабые канцерогены - вызывают опухоли менее чем у 20% животных в поздние сроки.
IV. Подозрение на канцерогенность - испытания на животных дают сомнительные результаты.
По аллергенному действию
I. Сильный аллерген - дает не менее 80% случаев аллергических реакций с быстрым развитием и выраженным проявлением всех клинико-морфологических признаков аллергии.
II. Средний аллерген - положительная аллергическая реакция у 50-80% животных, наличие большинства клинико-морфологических признаков.
III. Слабый аллерген - положительная аллергическая реакция у 50% животных, признаки аллергии выраженны слабо, не полностью.
Приложене 3
Предельно допустимые концентрации пестицидов (мг/дм3)