Проект очистки масло-шламовых сточных вод завода Топливная аппаратура электрохимическим методом

Министерство общего и профессионального образования РФ

Ярославский государственный технический университет

Кафедра охраны труда и природы

Курсовой проект защищён

с оценкой______________

Руководитель

к.т.н., доцент

__________И.В. Савицкая

Расчётно-пояснительная записка

к курсовому проекту по дисциплине

«Промышленная экология»

Тема: Проект очистки масло-шламовых сточных вод завода «Топливная аппаратура» электрохимическим методом

ОТП 09.26.32.07.023 КП

Нормоконтролёр

К. т . н., доцент

______________И.В. Савицкая

___”____________2001 г.

Проект выполнил

Студент гр. ХТОС-52

________________ Д.Б. Булгаков

___”____________2001 г.

2001

РЕФЕРАТ

44 с., 5 рис., 8 табл., 11 источников

МАСЛО-ШЛАМОВЫЕ СТОКИ, ЭЛЕКТРОКОАГУЛЯТОР, ОЧИСТКА, УТИЛИЗАЦИЯ ОТХОДОВ.

Объектом исследования является установка по очистке масло-шламовых сточных вод механо-сборочного корпуса №4 (МСК-4), площадка «Е» ЯЗТА методом электрокоагуляции.

В ходе работы проведён литературный обзор, в котором рассматриваются различные методы очистки масло-шламовых сточных вод, составлена технологическая схема процесса очистки, составлен материальный баланс процесса, проведён расчёт электрокоагулятора с железными электродами и разработана его конструкция, предложены способы утилизации шлама, который образуется в процессе очистки масло-шламовых сточных вод.

Содержание

Введение 5

1. Литературный обзор. 7

1.1 Очистка стоков коагуляцией 7

1.2 Очистка воды озонированием 8

1.3 Очистка воды адсорбцией на углях 8

1.4 Очистка воды с помощью ионообменных смол и полимерных адсорбентов 10

1.5 Очистка воды пенообразованием 11

1.6 Применение электрохимических методов для очистки стоков 13

1.6.1 Электрокоагуляция 13

1.6.2 Очистка с использованием нерастворимых электродов 18

1.7 Физические методы 19

2. Основная часть 22

2.1 Характеристика масло-шламовых стоков. 22

2.2 Состав сточной воды после очистки 23

2.3 Описание технологической схемы. 24

2.4 Характеристика технологического оборудования 27

2.5 Утилизация осадков 28

2.6 Материальный баланс 29

2.7 Расчёт электрокоагулятора с Fe-электродами 31

2.8 План расположения оборудования 34

3. Охрана труда 36

3.1 Общие требования безопасности (санитарно-гигиеническая характеристика производства) 36

3.2 Взрыво - и пожароопасные показатели веществ и материалов 38

3.3 Требования безопасности во время работы 38

3.4 Требования безопасности в аварийных ситуациях 39

3.5 Требования безопасности по окончании работы 40

Заключение 41

Список использованных источников 42

Приложение 1 43

Перечень графического материала 44

Введение

Развитие машиностроения ведёт к увеличению объёмов и видов стоков. Поэтому очистка промышленных сточных вод предприятий становится одной из важнейших экологических проблем.

Защита водных бассейнов от загрязнения промышленными сточными водами наиболее полно реализуется при внедрении оборотных циклов водоснабжения, которое возможно только при полной очистке сточных вод от токсичных ингредиентов.

Согласно проекту основными загрязнителями масло-шламового стока являются отработанные моющие растворы, содержащие смытые с деталей доводочные пасты, остатки СОЖ и минеральных масел, выносимых поверхностью деталей, а так же пассивирующие растворы нитрита натрия.

Фактически в масло-шламовый сток поступает значительно больше загрязнений ненормированного состава:

    загрязнения, поступающие при чистке размывом ёмкостей подвального помещения станции нейтрализации, содержащие минеральные масла, консистентные смазки в смеси с механическими загрязнениями, окислами и гидроокислами железа;

    Аварийные разливы из емкостей подвального помещения станции нейтрализации;

    Различные загрязнения полов производственных помещений основного производства и станции нейтрализации во время еженедельной влажной уборки помещений.

Загрязнения, поступающие при очистке емкостей подвального помещения размывом струёй горячей воды способствуют резкому загрязнению электродов прилипающими смазками. Объём стока повышается при этом на 27-34% от общего суточного количества, происходит резкий разовый выброс зашламляющих электроды веществ.

Неравномерность поступления объёмов и различия составов масло-шламового стока обусловлены так же технологией мойки деталей в основных цехах – неравномерностью сбрасывания отработанных растворов в течение смены, рабочего дня, недели, месяца.

Значительные колебания фактической величины масло-шламового стока зависят так же от совокупности следующих причин: интенсивности работы промывных ванн, неравномерности поступления деталей в производство, наличие протечек грунтовых вод в канализационные колодцы масло-шламовой канализации.

1. Литературный обзор.

Характеристика методов очистки масло-шламовых стоков.

    1. Очистка стоков коагуляцией

В основном рассматривается эффективность таких коагулян­тов, как сернокислый алюминий, сернокислое железо. Исследо­ватели приводят различные данные по применимости данного метода и эффекту очистки в случае различных концентраций ПАВ.

Для удаления из воды сульфонатов при их начальном содержании 1—1000 мг/л и рН=6,5—8,5 концент­рация коагулянта должна быть равной концентрации ПАВ, при­чем для доочистки предлагается использовать активированный уголь.

Разработан метод удаления ПАВ анионных моющих средств, включающий обработку вод раствором, содержащим 0,5% Са(ОН)>2> и 0,6% FeCl>3>. При этом детергент в концентра­ции 3 г/л почти полностью выпадает в виде хлопьев. На данной установке образуется значительное количество осадка, который необходимо удалять на полигон захоронения.

Удаление ПАВ в малых концентрациях требует значитель­ных затрат. Так, при содержании анионных ПАВ 1— 20 мг/л для достижения эффекта очистки 98,3% вводился коагу­лянт в концентрации 30—1000 мг/л, добавлением каустической соды значение рН поддерживалось в пределах 5—10, после чего подмешивался сульфат натрия 200—5000 мг/л и после коагуля­ции 1—50 мг/л полиэлектролита. Путем пенной сепарации про­исходило разделение фаз, и перешедшие в пену ПАВ выводи­лись из системы.

1.2 Очистка воды озонированием

Озонирование является одним из перспективных методов очистки стоков от ПАВ. В результате его использования обра­зуются продукты, которые не являются токсичными и не воз­действуют отрицательно на естественные био- и гидрохимиче­ские процессы в открытых водоемах, куда их сбрасывают. Считается целесообразным использовать озонирование для удаления низких концентраций ПАВ (4,5 мг/л), хотя имеются предложения по использованию этого метода и в случае значительно более высоких концентраций (до 200 мг/л). Сниже­ние содержания натриевых солей нефтяных сульфокислот на 90% достигалось за 30 мин озонирования. Расход озона соста­вил 5 мг на 1 мг ПАВ.

Для эффективного проведения озонирования необходимо подбирать определенные условия: рН среды, время контакта, концентрацию окисляемых ПАВ. Так, при озонировании стоков с концентрацией ПАВ 26 мг/л в щелочной среде (рН= =9—10) полное разложение достигалось уже в первые 3—5 мин, В слабокислой среде (рН=5,0) скорость озонирования в 5— 6 раз меньше. При концентрации ПАВ 14 мг/л полное разложе­ние происходит за 1—3 мин при концентрации озоно-воздушной смеси в стоках 9,5—15,0 мг/л и рН>8,0.

1.3 Очистка воды адсорбцией на углях

В большинстве случаев адсорбционной очистки сточных вод используется неизбирательный обратимый процесс физической адсорбции, обусловленной силами межмолекулярного взаимо­действия Ван-дер-Ваальса, протекающий с высокой скоростью. Соединения адсорбируются в недиссоциированном состоянии, физическая адсорбция осложнена физико-химическим взаимо­действием адсорбата (адсорбируемого вещества), адсорбтива (растворителя) и адсорбента.

Адсорбенты, применяемые для очистки воды, должны удов­летворять ряду требований: иметь большую сорбционную ем­кость; обладать высокой механической прочностью; легко реге­нерироваться; иметь низкую стоимость. Большая поверхность адсорбции свойственна веществам и материалам, обладающим сильно развитой пористой структурой или находящимся в тонкодисперсном состоянии.

В процессе очистки сточных вод от ПАВ могут применяться следующие адсорбенты: активированные угли, ионообменные смолы, неорганические осадки, различные сорта ископаемых уг­лей, полимерные сорбенты.

Активированные угли давно известны как эффективные сор­бенты органических веществ из водных растворов. Адсорбенты имеют макро-, переходные и микропоры. Макропоры имеют сред­ний радиус более 10-7 м и удельную поверхность 0,5—2,0 м2/г и не играют заметной роли в сорбционной емкости, являясь транс­портными каналами, по которым адсорбируемые молекулы про­никают вглубь частиц адсорбента. Переходные поры имеют эф­фективные радиусы в интервале от (1,5—1,6)*10-9 до 10-7 м и удельную поверхность 20—100 м2/г и в них адсорбируются ве­щества с крупными молекулами. Средние радиусы микропор ме­нее (1,5—1,6) •100-9 м и удельная поверхность 200—850 м2/г.

По соотношению объемов различных пор активированные угли делятся на следующие типы: первый структурный тип, со­держащий преимущественно тонкие микропоры (менее 2*10-9м); второй структурный тип с размерами пор (2—З)*10-9 м; сме­шанный структурный тип, содержащий в равной степени как микропоры, так и макропоры. Для адсорбции газов предпочти­тельнее угли первого и второго типов, а для очистки сточных вод—третьего типа. Такими углями являются угли марок КАД, БАУ, АР-3, АГ и ряд других.

Если ПАВ не диссоциированы или слабо диссоциированы, то они могут успешно извлекаться углями из сточных вод. По­скольку поверхность углерода электронейтральна, адсорбция на углях определяется в основном дисперсионными силами взаимо­действия. ПАВ, находящиеся в сточных водах в виде ми­целл, сорбируются наиболее полно.

Из многих марок активных углей для очистки сточных вод от ПАВ лучшим считается уголь КАД. Наиболее распростра­ненным методом регенерации углей является термический при температурах 250—400°С с последующей активацией адсорбен­та при температурах 800—900°С в среде азота, углекислого газа или паров воды.

В установках очистки сточных вод адсорбцией на активиро­ванном угле применяется гранулированный уголь. Известны по­пытки заменить его порошкообразным, так как последний в 3— 4 раза дешевле гранулированного. Кроме того, у порошкообраз­ного активированного угля более быстрая кинетика адсорбции вследствие сокращения пути внутренней диффузии молекул ор­ганических веществ и увеличения внешней поверхности. Регене­рация этого угля осуществляется в специальной печи во взве­шенном слое при 650—870°С в течение нескольких секунд при недостатке кислорода. Однако потери порошкообразного угля при регенерации составляет 15%, что в 3 раза выше, чем гранулированого. Стоимость регенерации порошкообразного угля примерно в 2 раза больше, чем гранулированного. Помимо этого возникает много технологических затруднений при работе с по­рошкообразным углем, и в настоящее время предпочтительнее применять гранулированные активированные угли.

При разработке способов очистки воды с помощью активи­рованных углей следует учитывать, что эти адсорбенты целесо­образно применять на стадиях доочистки вод, содержащих не­большие концентрации ПАВ (не более 100—200 мг/л).

1.4 Очистка воды с помощью ионообменных смол и полимерных адсорбентов

Крупные органические ионы, как правило, поглощаются ионитом с высокой степенью избирательности. Сорбция ионитами протекает более эффективно из разбавленных растворов с содержанием ПАВ менее 100 мг/л. Анионоактивные ПАВ сорбируются среднеосновными и сильноосновнымй ионитами, причем для регенерации ионитов рекомендуется использовать водно-ор­ганические растворы солей. Внедрение технологических схем очистки сточных вод с помощью динамического ионного обмена сдерживает тем, что необходима установка большого числа ионитовых фильтров со сравнительно коротким рабочим циклом, после чего необходима их регенерация, связанная с большими затратами энергии и средств на переработку продуктов регене­рации (элюатов). Учитывая также высокую стоимость ио­нитов и их дефицитность, очистка воды от ПАВ методом ион­ного обмена может рекомендоваться лишь в тех случаях, когда к воде предъявляются повышенные требования в части отсутст­вия ПАВ.

Литературных данных по применению полимерных адсорбен­тов для извлечения ПАВ недостаточно. Исследованные ад­сорбенты по эффективности значительно уступают активирован­ному углю. В динамических условиях ПАВ, содержащие в молекуле гидрофобные бензольные кольца, адсорбируются достаточно хорошо. Возможно, полимерные адсорбенты могут быть более эффективными при условии модификации их путем обра­ботки реагентами, повышающими сродство поверхности полиме­ров к адсорбируемым веществам.

1.5 Очистка воды пенообразованием

Метод заключается в адсорбции ПАВ на границе раздела фаз раствор-газ и в непрерывном снятии поверхностного слоя пены, Таким образом могут быть удалены многие ПАВ, но необ­ходимо найти оптимальные условия выделения и создать соот­ветствующую аппаратуру.

Большое влияние на степень извлечения ПАВ оказывает их концентрация в стоках. Пенное - концентрирование ПАВ эффективно и уместно лишь при извлечении малых количеств ПАВ в результате резкого увеличения объема Пенного продукта с ростом концентрации вещества.

При очистке пенной флотацией стоков, содержащих контакт Петрова (смеси сульфокислот) степень очистки при исходной концентрации ПАВ 400—1200 мг/л составила 31%. При извлечении ПАВ ОП-7 с содержанием их в стоках до 200 мг/л степень извлечения составила 65%. Эффективность очист­ки стоков от ПАВ пенообразованием зависит от ряда других факторов: рН среды, размера пузырьков барботируемого газа, высоты слоя раствора, температуры, наличия других ионов в растворе. Поэтому в каждом случае проводится подбор опти­мальных условии проведения процесса флотации. Например, в работе отмечается, что степень извлечения алкилсульфатов натрия является наибольшей при скорости подачи воздуха 12 мл/(мин*см2) поперечного сечения аппарата при высоте слоя раствора не менее 10 см.

При исследовании пенной флотации с додецилбензосульфонатом натрия в присутствии иона кальция установлено, что наилучшая флотация обеспечивается при рН=8. Ионы каль­ция связывают додецилбензосульфонат в адсорбционном слое и этим способствуют лучшему протеканию процесса флотации. Эф­фективность процесса зависит от величины поверхности разде­ла фаз, ионной концентрации додецилбензосульфоната, размера зеркала сточных вод во флотаторе, концентрации ионов кальция.

Флотационную очистку стоков, содержащих 120 мг/л алкиларилсульфокислот, предлагается проводить с использова­нием гидроксидов железа и алюминия при рН=8—9. Примене­ние флотации вместо отстаивания позволяет снизить объем об­разующегося осадка с 17—18 до 3,3% и сократить время обра­ботки воды с 2—5 ч до 0,7 ч: Отмечается, что при увеличении концентрации ПАВ до 500—600 мг/л ухудшения качества очист­ки не происходит.

Большое значение в достижении необходимой эффективно­сти очистки имеет размер пузырьков газа. Чем боль­ше размер флотируемых частиц, тем больше должен быть ра­диус пузырьков, необходимых для флотации. К методам насы­щения жидкости пузырьками воздуха или газа относятся подача воздуха через пористые материалы, механическое диспергирование воздуха, флотация с выделением воздуха из раствора, био­логическая флотация, электрофлотация. Экспериментально уста­новлено, что размер пузырьков в вакуумных машинах со­ставляет 0,2—0,5, в компрессионных 0,1—0,2 и в электрофлотационных 0,04—0,2 мм.

    1. Применение электрохимических методов для очистки стоков

Как показывает практика применения электрохимических ме­тодов, они обладают существенными преимуществами перед тра­диционными методами обработки воды. И в первую очередь они дают возможность в большинстве случаев отказаться от приме­нения реагентов, реагентного хозяйства, что наряду со сниже­нием стоимости электроэнергии, позволяет прогнозировать на ближайшее время еще более широкое их распространение.

      1. Электрокоагуляция

Этот метод зачастую оказывается более эффективным, чем реагентная коагуляция. Так, при очистке сто­ков от анионоактквных ПАВ типа сульфанол достигается сте­пень очистки 81,8% при плотности тока 0,5—0,7 А/дм2. Очистку проводили при повышенной температуре (40—55°С) с использованием железных и алюминиевых электродов при плотности тока 0,4—2,6 А/дм2 в проточном и стационарном режимах. Образующийся на поверхности электрокоагулятора пенный продукт удаляли скребковым устройством в пеносборник. Сточные воды, содержащие ПАВ, также обраба­тывали перед электрокоагуляцией хлоридом кальция, который предотвращал пассивацию электродов и соответственно увеличивал эффективность очистки, которая завершалась в течение 15—20 мин при плотности тока 1,0— 1,2 А/дм2. Концентрацию сульфанола удалось снизить с 850 до 40 мг/л и взвешенных веществ с 5460 до 25 мг/л при продолжительности электрокоагуляции 20 мин и плотности то­ка 2,5 А/дм2. Расход электроэнергии составил при этом 16 кВт-ч/м3.

Электрокоагуляционная очистка проводится при различных значениях рН среды. Например, очистку стоков от алкилсульфонатов осуществляют при рН=11—11,5. В этом случае в качестве щелочного реагента используется ок­сид кальция. При.использовании анода из алюминия, а катодов из меди при плотности тока до 3 А/дм2 за 20—30 мин содержа­ние алкилсульфонатов снижается с 3600 до 42,5 мг/л.

Небольшие концентрации ПАВ (около 100 мг/л) удаляют электрокоагуляцией без добавления нейтрализующих агент. При плотности тока 0,23—0,7 А/дм2, вре­мени пребывания сточной воды в межэлектродном пространст­ве 1—2 мин при последующем контакте гидроксидов железа с загрязняющими веществами в течение 10—15 мин содержание синтетического ПАВ снижалось с 94 до 4,2 мг/л. Расход электро­энергии составил 2,5 кВт-ч/м3. Для предупреждения пассива­ции электродов через 10—15 мин проводилась переполюсовка.

Рисунок 1

Технологическая схема установки для электрокоагуляционной очист­ки отработанных СОЖ

1- циклонный разделитель; 2—сборник сточной воды; 3 — сборник масла; 4—смеси­тель-нейтрализатор; 5— колонный электрокоагулятор; б—сборник отходов;7—источник питания; 8 — насосы

Описывается установка для электрокоагуляционной очистки концентрированных маслоэмульсионных сточных вод, образующих в цехах металлообработки предприятий (рис. 1).

Установка включает предварительную обработку воды пу­тем ее подкисления до заданного значения рН среды, электро­коагуляцию и окончательное осветление. Блок предварительной подготовки воды, разработанный в соответствии с рекоменда­циями Харьковского отделения ВНИИВОДГЕО, состоит из при­емного сборника 2 (см. рис. 1) для накопления сточной воды, происходит усреднение качественного состава отработанной сборника 3 для приема отстоявшегося минерального масла, сме­сителя 4 для подкисления раствором соляной кислоты исходной щелочной эмульсии до рН=5,2—5,6, а также насосов 8 для пе­ремещения воды и емкости для хранения минеральной кислоты (на рис. 5.1 не показана). В приемном сборнике сточной воды происходит усреднение качественного состава отработанной СОЖ, осаждение абразивных и металлических частиц и отстой неэмульгированного масла, попадающего в воду из гидросистем смазки станков и в результате разрушения эмульсии в процес­се ее длительной эксплуатации. Отстоявшееся масло из сборни­ка направляется в отделение очистки для его повторного исполь­зования.

Усредненную жидкость из приемного сборника подают в сме­ситель для понижения щелочности среды. При подкислении от­работанной СОЖ, содержащей ПАВ, соляной кислотой проис­ходит вытеснение из молекул ПАВ ионов щелочных металлов (в частности, иона Na-) протонами сильной кислоты

RCOONa+H+RCOOH+Na-, т. е. процесс сопровождается накоплением в эмульсии хлористо­го натрия.

Эмульсия из смесителя самотеком направляется в зону ко­агуляции колонного электрокоагулятора 5, где она смешивается с электролитом, содержащим электрогенерированный коагулянт, и мельчайшими пузырьками водорода, выделяющимися на по­верхности катода. В качестве электролита, подаваемого на электродный блок для образования гидроксида металла, приме­няют очищенную воду из отстойника.

Материалом для растворимого анода служит алюминий или его сплавы. Продукты анодного растворения алюминия непре­рывно удаляются из межэлектродного пространства восходя­щим потоком электролита и выделяющимся на электродах газом и смешиваются с очищаемой жидкостью в зоне над электродами. В результате взаимодействия гидроксида алюминия с капелька­ми масла и разрушения межфазной адсорбционной пленки на их поверхности происходит слипание (коалесценция) капелек. Об­разующиеся укрупненные частицы масла флотируются на по­верхность жидкости пузырьками водорода, а также транспортируются вверх потоком жидкости. Образующийся на поверхности жидкости слой отходов в виде пены непрерывно удаляется путем эжектирования сжатым воздухом.

Очищаемая вода подается в дополнительную зону флотации, расположенную в отстойной камере. В качестве материалов нерастворимых перфорированных кольцевых элект­родов применяется коррозионно-стойкая сталь. Создание в ко­лонном электрокоагуляторе второй зоны флотации позволяет значительно повысить производительность аппарата. Очищенная вода направляется на окончательное осветление в отстойник вер­тикального типа. Масляные шламы накапливаются в специаль­ном сборнике 6 и в дальнейшем направляются на заводы желе­зобетонных конструкций, где используются для смазывания ме­таллических форм взамен чистого минерального масла. Питание электрокоагулятора осуществляется от выпрямительного агрега­та ВАКР-1200. Подобная установка эксплуатируется длитель­ное время на Харьковском заводе «Серп и Молот» и может быть также использована для очистки воды, содержащей ряд других примесей: жиры, нефтепродукты, полимеры.

Авторами также предложена установка для регенера­ции отработанных эмульсий с использованием тех же колонных электрокоагуляторов, которые они считают наиболее перспектив­ными для удаления из системы загрязняющих веществ с после­дующим добавлением в очищенную жидкость недостающего ко­личества эмульсола. Это позволяет создать систему многократ­ного оборотного водоиспользования в цехах металлообработки.

Механизм регенерации отработанных эмульсий СОЖ заключается в селективном удалении из нее избыточного коли­чества частиц дисперсной фазы путем частичной коалесценции капелек масла электрогенерированным коагулянтом. Очищенная таким методом СОЖ удовлетворяет в основном требованиям технических условий к воде для приготовления рабочих раство­ров СОЖ. К таким условиям относятся заданная жесткость во­ды, коррелирующее действие водной эмульсии, склонность к пенообразованию, устойчивость пены и ряд других.

Схема регенерации отработанной эмульсии «Укринол-1» по указанному выше принципу реализована в цехе автоматических линий для обработки деталей на Мелитопольском заводе транс­портных гидроагрегатов. Схема установки представлена на рисунке 2. Установка состоит из четырех колонных электрокоагу­ляторов, работающих параллельно. Отработанная СОЖ из ем­костей насосами подается в коллекторы, расположенные в сред­них частях аппаратов. Одновременно в электродные блоки насо­сами подается чистая техническая вода (электролит) из отстой­ника, разделенного вертикальной перегородкой на две части.

Расходы отработанной эмульсии и электролита контролиру­ются ротаметрами. Процесс очистки длительно эксплуатируемой

Рисунок 2

Технологическая схема регенерации отработанной эмульсии

«Укри­нол-1» с использованием колонных электрокоагуляторов:

1 — электрокоагулятор: 2— циклон; 3, 4 — сборники отходов и отработанной эмульсии; 5, 6—сборники электролита и очищенной воды; 7 — насосы: 8— ротаметры

СОЖ осуществляется в электрокоагуляторах путем ее смеше­ния с восходящим потоком электролита, предварительно насы­щенного гидроксидом металла растворимых электродов. В ре­зультате коалесценции капелек эмульгированного масла, а так­же коагуляции механических примесей с последующей флота­цией шлама на поверхность жидкости она освобождается от за­грязнений и подается в отстойник, а затем в отделение приго­товления свежей эмульсии. Там в нее добавляется эмульсол «Укринол-1» в количестве, достаточном для получения заданной концентрации (обычно 3—5%) эмульсии СОЖ.

      1. Очистка с использованием нерастворимых электродов

При­менение нерастворимых электродов для очистки стоков от орга­нических загрязнений является технологически выгодным, поскольку в данном случае не требуется значительного расхода ме­талла на электроды и не образуются в большом количестве осад­ки гидроксидов металлов, которые необходимо удалять на захо­ронение или утилизацию. Однако эффект очистки стоков от ПАВ несколько меньше, чем при использовании растворимых элек­тродов.

Так, при использовании анода ОРТА (титан, покрытый ак­тивным слоем окисла рутения), который не растворяется в про­цессе электролиза, эффект очистки по ХПК составлял 70—80%, по синтетическому ПАВ— 75%. При этом время обработки око­ло 10—15 мин при плотности тока 2 А/дм2. Если при боль­шом расходе стоков (до 2000 м3/сутки) осуществлять перевод СПАВ в пену в основном с помощью сжатого воздуха при интен­сивной его подаче [25—30 м3/(м2*ч)], то в случае использова­ния сульфокислот степень извлечения составит всего 30—40%.

Иногда нерастворимый анод сочетается с растворимым при катодной поляризации электрода из алюминия. Этот способ обеспечивает эффект очистки по ХПК 82% при добавлении 20 г/л хлорионов и плотности то­ка 1 А/дм2.

Увеличение эффективности очистки стоков от ПАВ дости­гается путем последовательной их обработки сначала в электро­флотаторе при добавлении раствора хлористого натрия, а затем в электролизере с нерастворимыми электродами, где происхо­дит деструкция оставшихся органических загрязнений. В дальнейшем стоки обрабатываются в кон­тактном резервуаре и узле дехлорирования. При использовании электрофлотации серьезным технологическим затруднением яв­ляется пенообразование, которое г'асят острым паром, а также предлагается специальный узел, состоя­щий из сборника пенного конденсата, подсоединенного к элек­трофлотатору, электролизера с растворимыми электродами (из железа или алюминия), электролизера с нерастворимыми элек­тродами с отстойником, из которого очищенная жидкость воз­вращается в производство.

Подводя итоги рассмотрению методов очистки сточных вод от ПАВ, можно подчеркнуть, что весьма эффективно очищаются в основном воды с небольшим количеством этих веществ (до 100 мг/л). Концентрации порядка 200 мг/л называются высо­кими.

Для получения удовлетворительного эффекта сточные воды обычно необходимо подвергать обработке комбинированными способами. В них способы чередуются в определенной последо­вательности и каждый предыдущий способ устраняет отрица­тельное влияние какого-либо компонента сточных вод на после­дующие операции, и так до получения воды, пригодной для пов­торного использования, направления на биологическую очистку или спуска в водоемы.

Очистка вод, содержащих концентрации ПАВ более 1 г/л, отражена в литературе меньше. Однако здесь проявляется до­вольно четкое мнение о наибольшей перспективности электро­химических методов для очистки концентрированных стоков.

1.7 Физические методы

К ним относятся электрогидравлический, ультразвуковой, электростатический, радиационный и магнит­ный методы, причем два последних имеют хорошую перспективу внедрения для повышения эффективности ранее рассмотренных методов очистки от ПАВ Радиационная очистка воды - самый быстрый метод, скорость которого зависит от количества энергии излучения, подаваемой в единицу време­ни. Этот метод не требует введения в воду новых химических реагентов и протекает в одну стадию Под действием радиации в сточной воде происходят окисление, полимеризация, коагуля­ция и разложение загрязняющих веществ

Для удаления 90—95% ПАВ при начальной концентрации 200 г/м3 необходима доза облучения 60Со 106 Рад При наличии в воде кислорода процесс ускоряется Сильное влияние на ра­диационное разрушение ПАВ оказывает рН воды В щелочной среде тетрапропилен- и пентапропиленбензосульфонаты вообще не разлагаются. В нейтральной среде указанные ПАВ разруша­ются слабой кислой среде скорость разложения значительно возрастает. Продукты радиализа играют главную роль в процес­се превращения ПАВ. Показано, что при радиализе сульфанола, эмульгатора некаля, ОП-7, ОП-9 для полного удаления ПАВ при их начальной концентрации 100 г/м3 необходима доза 0,4—0,5 МРад. При этом поверхностное натяжение раствора становится равным 70 мН/м и пенообразование не происходит. Барботаж воздуха, увеличивает степень разрушения указанных веществ вдвое. При облучении дозой 0,3—0,5 МРад раствор некаля приобретает способность разлагаться биологически. Присутствие неорганических и органических примесей не влияет на радиационное разложение ПАВ.

Магнитная обработка также относится к тем методам, кото­рые позволяют интенсифицировать процесс очистки воды без до­бавления специальных реагентов, в свою очередь загрязняющих окружающую среду и препятствующих применению замкнутого водооборота. Установлено, что при воздействии на воду магнитного поля улучшается флотация взвешенных веществ, ускоряются их осаждение и агрегация, изменяется структура образующегося осадка. Остаточная концентрация взвешенных ве­ществ снижается в 1,5 раза, а время осаждения — в 2 раза. Раст­воренное железо превращается в магнитные оксиды, которые легко удаляются из воды в магнитных полях вместе с адсорби­рованными на них загрязняющими веществами.

Преимущества метода электромагнитной обработки заключа­ются в невысокой стоимости оборудования и малых эксплуата­ционных расходах. В частности, расходы на электроэнергию со­ставляют 0,05—0,2 к. на 1 м3 воды.

2. Основная часть

    1. Характеристика масло-шламовых стоков.

Масло-шламовый сток представляет устойчивую систему фаз:

    Эмульсии минеральных масел и СОЖ в воде;

    Суспензии механических взвесей, абразивных и механических частиц;

    Раствора солей моющих и пассивирующих составов поверхностно-активных веществ (ПАВ) и солей жёсткости.

Эмульсия масел в воде имеет значительную собственную устойчивость характеризующуюся тем, что на поверхности микрокапель масла образуется адсорбционно-сольватный слой молекул эмульгатора (воды и ПАВ), обладающий повышенными структурно-механическими свойствами: вязкостью, упругостью, прочностью, препятствующими сливанию капель.

При перекачивании сточных вод насосами происходит дополнительное диспергирование частиц масла и образование ещё более тонкой и устойчивой эмульсии. Наиболее тонко частицы масла диспергированы в сточных водах, содержащих СОЖ.

Общее количество поступающих от основного моечного оборудования загрязнений отличается по количеству и составу в разные дни недели, но при отсутствии дополнительных источников м.ш. стока, закономерность изменения постоянно в течение недели.

Таблица 1. Состав сточной воды

Состав СВ

СВ, г/л

Нефтепродукты

0,16

Сульфаты

0,5*10-3

Взвеси

0,174

Для омыленных тяжёлых нефтепродуктов и синтетических моющих средств характерна высокая прилипаемость к электродам, способствующая их зашламлению.

По завершении рабочего дня в конце рабочей недели происходит залповый выброс нефтепродуктов при сливе рабочих растворов моечных машин.

    1. Состав сточной воды после очистки

Состав сточной воды после очистки представлен в табл.2

Таблица 2. Состав сточной воды после очистки

Состав СВ

СВ, мг/л

Нефтепродукты

0,45

Сульфаты

7,1

Взвеси

5

2.3 Описание технологической схемы.

Масло-шламовые стоки из цеха самотёком поступают в приёмную ёмкость (Е-001), расположенную в подвале, с временем пребывания стоков 2 часа. Из приёмной ёмкости стоки насосами подаются в буферную ёмкость смеситель (Е-002), где обрабатываются серной кислотой. Подготовленные таким образом стоки подаются на электрокоагуляторы (Пн-003), в которых очищаются способом, представленным ниже.

Используемый метод очистки м.ш. стока есть разновидность реагентного метода разрушения эмульсий электрогенерированным коагулянтом. В качестве основных принимаются процессы электролитической коагуляции и флотации агрегатированных взвесей водородом к поверхности. В кислой среде при pH=3,3-5 в процессе анодного растворения железо переходит в форму Fe2+. При этом протекают реакции:

    разложение воды с выделением водорода: 2H>2>O+2e=H>2>+2OH-;

    образование гидроксидов железа:

Fe2++2OH-=Fe(OH)>2> (хлопья тёмно-зелёного цвета)

Fe3++3OH-=Fe(OH)>3> (бурого цвета).

По мере протекания реакции и перехода жидкости из нижней части электродного пакета в верхнюю происходит подщелачивание. При рабочей плотности тока 0,8 А/дм2 наибольшее увеличение pH до 9,5-10 происходит в растворах с начальными значениями pH не менее 5,2-5,8. При начальных значениях pH 3,2-5,2 конечная величина pH не превышает 6,8-7,3.

В щелочной среде происходит переход железа в форму феррит-иона HFeO>2>-, в незначительном количестве, который так же обладает хорошими коагулирующими свойствами и свойствами ферримагнетиков. Это форма гидроксидов имеет чёрный цвет. В щелочной среде резко возрастает пассивация электродов на их поверхности начинает выделятся кислород.

Часть продуктов анодного растворения железа непрерывно удаляется из межэлектродного пространства восходящим потоком электролита и выделяющимся на электродах газом, смешивается с очищаемой в межэлектродной зоне. В результате взаимодействия гидроксидов железа с капельками масла и разрушения межфазной адсорбционной плёнки на их поверхности происходит слипание капелек. Образующиеся укрупнённые частицы масла флотируются на поверхности жидкости пузырьками водорода а так же транспортируются вверх потоком жидкости. Образующийся на поверхности слой отходов в виде пены через сливной лоток удаляется на дальнейшую обработку.

В межэлектродной зоне одновременно протекают процессы электростатической, электрохимической, гидродинамической и концентрационной коагуляции, которые в совокупности создают интенсивный процесс электроосаждения. Особенно эффективно электроосаждение происходит, когда имеется существенное преобладание сил поляризационной природы над энергией динамического движения, т.е. при малых скоростях движения жидкости в межэлектродной зоне, что ограничивает время пребывания обрабатываемого стока в межэлектродном пространстве.

После электрокоагуляторов стоки, обрабатываемые полиакриламидом из ёмкости для полиакриламида (Е-004) по лотку поступают в камеру хлопьеобразования (Е-005), откуда поступают на полочный отстойник (О-006). После очистке в отстойнике концентрация нефтепродуктов составит в среднем 12% от первоначального значения.

В настоящее время содержание нефтепродуктов колеблется от 200 до 560 мг/л, при сокращении общего объёма стока концентрация нефтепродуктов повысится так как снизится разбавление моечных растворов (например, при отключении от масло-шламовой канализации умывальников). При этом концентрация нефтепродуктов возрастёт на 30% и составит 300-840 мг/л. Концентрация после очистки в отстойниках составит 36-100 мг/л.

Осадок после электрокоагуляторов и полочного отстойника поступает в илоуплотнитель (Е-009). Всплывшие масла из камеры хлопьобразования и полочного отстойника поступают в маслосборник (Е-008). Очищенные стоки после полочного отстойника поступают в ёмкость для воды после отстойника (Е-007), а затем в хоз. фекальную канализацию.

2.4 Характеристика технологического оборудования

Таблица 3. Технологическое оборудование

№ на техно-логи-ческой схеме

Наименование технологического оборудования

Количество

Габариты

Материал

Всего

В т.ч. резерв-ных

Объём, м3

Длина, м

Ширина, м

Высота, м

Е-001

Приёмная ёмкость

1

-

26,4

4

3

2,2

Сталь 3

Е-002

Смеситель

1

-

3

1

2

1,5

Сталь 3

Пн-003

Электрокоагулятор

1

-

0,847

0,58

0,86

1,7

Сталь 3

Е-004

Ёмкость для полиакриламида

1

-

0,5

0,86

0,58

1

Сталь 3

Е-005

Камера хлопьеобразования

1

-

0,85

0,86

0,58

1,7

Сталь 3

О-006

Тонкослойный полочный отстойник

1

-

24

4

2

3

Сталь 3

Е-007

Ёмкость для воды после отстойника

1

-

8

4

2

1

Сталь 3

Е-008

Маслосборник

1

-

1,8

1

1,5

1,2

Сталь 3

Е-009

Илоуплотнитель

1

-

3,3

1,5

2,2

1

Сталь 3

Н-010

Насос 1,5Х-6Д-1

2

1

0,17

0,9

3,5

0,54

Н-011

Насос 1,5Х-6Д-1

2

1

0,17

0,9

3,5

0,54

Н-012

Насос 4А90L2

2

1

0,04

0,368

0,21

0,54

Н-013

Насос 4А90L2

2

1

0,04

0,368

0,21

0,54

2.5 Утилизация осадков

Химический способ обезвреживания пастообразных осадков: отходы подвергают обработке оксидом щелочноземельного металла, предварительно обработанного ПАВ в отношении отхода - реагент (1:1-10). После смешения с отходами оксид щелочноземельного металла образует с водой гидроксид, в результате чего отходы равномерно им адсорбируются. После реакции образуется сухой, стойкий при хранении порошок, который можно использовать в качестве облицовочного материала для различных хранилищ, строительного материала при сооружении дорог, для посыпки льда, учитывая его сильную гидрофобность.

Масла после маслосборника вывозятся автотранспортом на нефтебазу, откуда отправляются на котельные, где используются в качестве топлива.

2.6 Материальный баланс

Таблица 4.

Состав СВ

СВ, г/ч

Добавл. реагент, г/ч

Всего, г/ч

Очищ. Вода, г/ч

Шлам, г/ч

Пено-продукт, г/ч

Всего, г/ч

Нефтепродукты

1248

-

1248

3,51

414,83

829,66

1248

Сульфаты

3,9

131,27

135,17

55,38

79,79

-

135,17

Взвеси

1146,6

-

1146,6

39

1107,6

-

1146,6

Объём сточных вод, поступающих на электрокоагулятор 7,8 м3/ч. Концентрация нефтепродуктов в загрязнённой сточной воде 0,16 г/л, Концентрация сульфатов в загрязнённой сточной воде 0,5 мг/л, концентрация взвесей в загрязнённой сточной воде 0,147 г/л. В очищенной сточной воде концентрация нефтепродуктов 0,45 мг/л, концентрация сульфатов 7,1 мг/л, концентрация взвесей 5 мг/л.

    Масса нефтепродуктов в загрязнённой сточной воде:

С >нефтепродуктов>=0,16 г/л=160 г/м3

G >нефтепродуктов>=160*7,8=1248 г/ч

    Масса сульфатов в загрязнённой сточной воде:

С >сульфатов>=0,5 мг/л=0,5 г/м3

G >сульфатов>=0,5*7,8=3,9 г/ч

    Расход кислоты необходимый для корректировки pH стоков

от 10,5 до 3,5:

0,316*49*7,8=120,77 г/ч

0,316 – доза кислоты г-экв/м3, необходимой для корректировки;

49 – эквивалент серной кислоты;

7,8 – производительность установки, м3/ч.

    Масса взвесей в загрязнённой сточной воде:

С >взвесей>=0,147 г/л=147 г/м3

G >взвесей>=147*7,8=1146,6 г/ч

    Масса нефтепродуктов в очищенной сточной воде:

С >нефтепродуктов>=0,45 мг/л=0,45 г/м3

G >нефтепродуктов>=0,45*7,8=3,51 г/ч

    Масса сульфатов в очищенной сточной воде:

С >сульфатов>=7,1 мг/л=7,1 г/м3

G >сульфатов> =7,1*7,8=55,38 г/ч

    Масса взвесей в очищенной сточной воде:

С >взвесей>=5 мг/л=5 г/м3

G >взвесей>=5*7,8=39 г/ч

    Масса шлама:

G>шлама>= (1248-3,51)* 1/3=414,83 г/ч

    Масса пенопродукта:

G>пенопродукта>= (1248-3,51)* 2/3=829,66 г/ч

2.7 Расчёт электрокоагулятора с Fe-электродами

    Определяем необходимую дозу Fe:

D>Fe>=48 г/м3;

    Определим часовой расход Fe, г/ч:

,

где D>Fe> –доза Fe, г/м3;

Q=7,8 м3/ч – расход воды;

г/ч;

3) Определяем силу тока обеспечивающую растворение Fe-анодов:

,

где I – сила тока, А;

k=1,04 г/А*ч – электрохимический эквивалент Fe;

t=27 мин = 0,45 ч – время обработки СВ в электрокоагуляторе;

=80% - выход Fe по току;

G>Fe> - часовой расход Fe, г/ч.

А;

    Рассчитываем число электродов:

Примем 1 анод b=0,8 м, H=1м,

где b – ширина электрода, м;

H – высота электрода;

электродов, т.е. 8 анодов и 9 катодов.

    Определяем необходимую толщину анода, с учётом его износа на 80% и срок эксплуатации 50%:

, где

Q>сут>=7,8 м3/ч=93,6 м3/сут – производительность установки;

n>cут>=100 сут – расчётная продолжительность работы 1 пакета электродов;

S=12,5 м2=12,5*104 см2;

=7,8 г/м3 – удельный вес анодного материала.

    Определяем геометрические размеры электрокоагулятора:

В=b+2a,

где В - ширина электрокоагулятора, м;

b=0,8 м – ширина электрода;

a=30 мм=0,03 м – расстояние от последнего электрода до стенки

корпуса;

В=0,8+2*0,03=0,86 м;

Н=h>эл>+a>1>+а>1>’,

где H – высота электрокоагулятора, м;

а>1>=50мм=0,05 м> >- расстояние от нижнего конца электрода до дна

электрокоагулятора;

a>1>’=20мм=0,02 м – расстояние от верхнего конца электрода до верха

электрокоагулятора;

Н=1+0,05+0,02=1,07 м;

L=N*+(N-1)*a>2>+2a,

где L – длина электрокоагулятора;

a>2>=20 мм=0,02 м – расстояние между электродами.

L= 17*0,01152+(17-1)*0,02+2*0,03=0,19584+0,32+0,06=0,58 м.

    Напряжение в электрокоагуляторе:

U=9 В

    Потребляемая мощность:

Е=I*U, Вт

Е=1000*9=9000 Вт

    Расход электроэнергии:

W=E/q=9000/7,8=1154 Вт*ч/м3;

    Общий объём ванны электрокоагулятора:

W=B*L*H=0,86*0,58*1,07=0,53 м3.

2.8 План расположения оборудования


3. Охрана труда

3.1 Общие требования безопасности (санитарно-гигиеническая характеристика производства)

Опасными моментами при работе на установке по очистке масло-шламовых сточных вод методом электрокоагуляции являются:

    возможность отравления парами кислот, щелочей;

    возможность ожогов кислотой, щёлочью;

    возможность поражения электрическим током.

Таблица 5. Санитарно-гигиеническая характеристика проектируемого производства

Санитарная классификация производства по

СаНПиН 2.2.1/2.11.984-00

Санитарно защитная зона по

СаНПиН 2.2.1/2.11.984-00

Группа производственного процесса по

СниП 2.09.04-87

Основные меры предупреждения отравлений

1 класс

1000 м

Индивидуальные, групповые СЗ.

    К работе аппаратчика по очистке сточных вод допускаются лица, не моложе 18 лет, прошедшие предварительный медосмотр, курс обучения безопасным методам работы и сдавшие экзамены квалификационной комиссии на допуск к самостоятельной работе.

    При допуске к самостоятельной работе аппаратчики должны пройти вводный инструктаж на рабочем месте и должны пройти теоретическое и производственное обучение в объёме, соответствующем программе подготовки и всех действующих инструкций.

    Характеристика применяемых химических реагентов.

Таблица 6. Токсикологическая характеристика вредных и вспомогательных веществ и продуктов производства

Вещество

Характеристика веществ

Характеристика действия на организм человека

ПДК в воздухе раб. Помещения

Известковое молоко

Известь гидроокиси в воде, относится к слабым щелочам и проявляет их хим. свойства.

Раздражает слизистые оболочки, вызывает кашель, чихание, особенно действует на слизистую оболочку глаз при попадании на кожу вызывает сильные ожоги.

3 мг/м3

Серная кислота

Маслянистая жидкость, в чистом виде прозрачна, при температуре выше 50С выделяет кислород.

Раздражает и прижигает слизистые оболочки носа и глаз, при попадании на кожу вызывает сильные ожоги.

0,5 мг/м3

Едкий натр

Жидкость от голубоватого до бурого цвета. Содержит гидроокись натрия.

Действует на ткани тела прижигающе, растворяя белки. Особенно опасно попадание щёлочи в глаза даже в мелких количествах.

Бисульфит натрия

Водный раствор светло-жёлтого цвета до коричневого. Содержание в растворе не менее 22,5%.

Действие бисульфита аналогично действию слабых растворов кислот.

0,5 мг/м3

Соляная кислота

Прозрачная жидкость от бесцветной до жёлтого цвета, без осадка и механических примесей, при взаимодействии с металлами выделяют газообразный водород. Содержание чистой кислоты менее 31%.

Раздражает и прижигает слизистые оболочки носа, глаз. При попадании на кожу вызывает сильные ожоги.

5 мг/м3

Едкий натр (твёрдый)

Масса беловатого цвета очень гигроскопична, на воздухе распыляется, в воде хорошо растворяется с выделением тепла.

Опасно попадание кусочков щёлочи в глаза при дроблении, действует прижигающе на кожу.

    Характеристика стоков, поступающих на станцию нейтрализации

Таблица 7.

Хромовые стоки

Хром в СВ присутствует в виде 3-х и 6-ти валентных соединений

При малых дозах – лёгкое раздражение слизистой оболочки носа, насморк, чихание, кровотечение

0,01 мг/м3

Кислотно-щелочные стоки

Кислота и щёлочь присутствует в свободном и связанном виде.

Действует на кожу аналогично слабым щёлочам. Почти безвреден, токсическими свойствами не обладает.

Масло-эмульсионный сток

Масло веретенное инд. 12, 20 машинное инд.30, сульфофрезол, эмульсия состав: эмульсол, сода кальц., нитрит натрия, фурацелин. Имеет запах.

    Применение указанных реагентов и наличие ядовитых веществ в стоках требует от работающих строгого соблюдения правил охраны труда и мер личной гигиены.

    Лица не выполняющие требований настоящей инструкции привлекаются к ответственности согласно правилам внутреннего трудового распорядка предприятия.

3.2 Взрыво - и пожароопасные показатели веществ и материалов

Таблица 8. Взрыво - пожароопасные свойства материалов

Наимено-вание веществ и материалов

Температура кипения, С

Плотность, кг/м3

Темпера-тура вспышки, воспл., самовоспламен., С

Предела воспламенения

Краткая характе-ристика

Объёмная доля, %

Темпера-тура, С

1. Масло индустр. 50

-

903

Т>всп.>=200С

Т>воспл.>=

146191С

-

380

Вязкая, горючая жидкость

2. Поли-акриламид

-

-

240С

-

410

Горючее вещество

3. Серная кислота

330

1834

-

-

-

Едкая негорючая жидкость

Согласно техпроцессу масло-шламовые стоки и вещества необходимые для их обработки не подвергаются нагреву выше более 50С. Исходя из характеристики веществ приведённых в таблице 8 в данном производстве наиболее опасным с точки зрения пожарной безопасности является масло индустриальное относящееся к горючей жидкости с Т>воспл.>=146191С, которое затем сжигается на котельных - утилизируется в качестве топлива. Согласно НПБ-105-95 производственное помещение, в котором обрабатываются масло-шламовые стоки, относится к категории Г.

3.3 Требования безопасности во время работы

    Строго выполнять инструкцию по ведению технологического процесса, должностные инструкции, требования по охране труда и промсанитарии.

    Соблюдать чистоту рабочего места, не допускать разлива кислот, щелочей и других реагентов. Не загромождать проходы и проезды.

    При работе с серной кислотой необходимо наливать кислоту в воду, а не наоборот, пользоваться защитными очками, резиновыми перчатками, сапогами, фартуком.

    Приготовление растворов для нейтрализации и обезвреживания производить только под руководством старшего смены, инженера химика.

    При остановке вентиляции немедленно прекратить дозировку обезвреженных растворов и их приготовление, выйти из помещения, плотно закрыть двери, ведущие в другие помещения.

    Работы по ликвидации загазованности и загрязнения помещений вредными продуктами производить только в фильтрующем противогазном респираторе РПГ-67В.

3.4 Требования безопасности в аварийных ситуациях

    В случае разлива щелочей и кислот на пол немедленно произвести нейтрализацию их, а затем смыть струёй воды.

    При попадании щёлочи на кожу немедленно смыть её водой, а затем 2% раствором уксусной кислоты, водой смыть в течение 20-30 мин. Если щёлочь попадёт на глаза, то глаза необходимо быстро промыть водой, а затем 2% раствором борной кислоты. После произведения операций, надо обратиться в медпункт.

    При попадании кислоты на кожу немедленно смыть её водой, а затем промыть 2% раствором соды. При попадании кислоты в глаза, промыть их водой, после чего немедленно обратиться в медпункт.

    При отравлении химическими парами пострадавшего вынести на воздух, вызвать врача. До прихода врача организовать подачу кислорода для дыхания. Дать пострадавшему большое количество молока.

    При возникновении загорания, первый заметивший пожар, должен вызвать команду по телефону 01 или по эл. пожарной сигнализации. До прибытия пожарной команды принять меры по ликвидации пожара первичными средствами для тушения пожара, находящимися на станции.

3.5 Требования безопасности по окончании работы

    Привести рабочее место в порядок, убрать инструменты и приспособления.

    Вымыть руки, лицо тёплой водой и принять душ.

    При сдаче смены сообщить сменьщику и мастеру обо всех недостатках, обнаруженных в процессе работы.

Заключение

Объектом исследования являлась установка по очистке масло-шламовых сточных вод механо-сборочного корпуса №4 (МСК-4), площадка «Е» ЯЗТА методом электрокоагуляции.

В ходе работы проведён литературный обзор, в котором рассматриваются различные методы очистки масло-шламовых сточных вод, составлена технологическая схема процесса очистки, составлен материальный баланс процесса, проведён расчёт электрокоагулятора с железными электродами и разработана его конструкция, предложены способы утилизации шлама, который образуется в процессе очистки масло-шламовых сточных вод.

Список использованных источников

    Бухтер А.И. Переработка отработанных минеральных масел. – М.: ЦНИИТ Энефтехим, 1975.- 48 с., ил.

    Кульский Л.А., Строкач П.П., Слипченко В.А. Очистка воды электрокоагуляцией. – Киев: Будiвельник, 1978. – 112 с.

    Макаров В.М. Рациональное использование и очистка воды на машиностроительных предприятиях. М.: Машиностроение, 1988. – 272 с., ил.

    Охрана окружающей среды от отходов гальванического производства. Материалы семинара. М.: «Знание», 1990. - 148 с., ил.

    Пожарная опасность веществ и материалов, применяемых в химической промышленности: Справочник / Под общ. Ред. И.В.Рябова. – М.: Химия, 1970. – 336 с.

    Селицкий Г.А. Электрокоагуляционный метод очистки сточных вод от ионов тяжёлых металлов. – М.: ЦНИИТЭИ ЦВЕТМЕТ, 1978. – 24 с.

    Смирнов Д.И., Генкин В.Е. Очистка сточных вод в процессах обработки металлов. – М.: Металлургия, 1980. – 196 с.

    Стандарт предприятия. СТП 701-99: ЯГТУ. – Ярославль, 1999. – 48 с.

    Стандарт предприятия. СТП 702-99: ЯГТУ. – Ярославль, 1999. – 24 с.

    Стандарт предприятия. СТП ЯрПИ 706-88: ЯрПИ. – Ярославль, 1988. – 65 с., ил.

    Яковлев С.В. Очистка производственных сточных вод. – М.: Стройиздат, 1986. – 336 с., ил.

Приложение 1

Перечень графического материала

Лист 1

Технологическая схема очистки масло-шламовых стоков.

Лист 2

Электрокоагулятор (сборочный чертёж).