Стабилизатор напряжения (работа 1)

TYPE=RANDOM FORMAT=PAGE>24


Содержание

Введение

4

1. Обзор литературы по теме

5

2. Выбор описание электрической схемы устройства

14

3. Расчёт элементов схемы

16

4. Методика испытания устройства

19

Заключение

20

Список литературы

21

Приложения. Комплект документов на устройство (эскизный проект)

ВВЕДЕНИЕ

В промышленной сети напряжение не постоянно в течение суток: в зависимости от потребления энергии промышленными предприятиями, электрическим транспортом и расхода в наших квартирах напряжение в сети то возрастает, то убывает. Следо­вательно, при питании аппаратуры от этой сети будет изменяться напряжение и на обмотках трансформатора, а значит, и на вы­ходах выпрямителя и фильтра. Если колебания напряжения сети составляют ±10%, то в таких же пределах изменяется и величина выпрямленного напряжения. При изменении питающего напря­жения нарушается режим работы электронных приборов (тран­зисторов, электронных ламп), что приводит к ухудшению пара­метров всего устройства. Например, в радиоприемнике при из­менении режима работы транзисторов могут возникнуть сильные искажения звука, хрипы, гудение. Такие же явления наблюдаются в нем при питании от химических источников тока, напряжение которых по мере разрядки уменьшается. Чтобы этого не проис­ходило, напряжение питания электронных устройств часто ста­билизируют. Здесь возможны два способа: стабилизация пере­менного напряжения на входе силового трансформатора или ста­билизация выпрямленного напряжения. В первом случае приме­няют специальные феррорезонансные стабилизаторы. Их недос­татками являются большие габариты и вес. Чаще прибегают к стабилизации выпрямленного напряжения, осуществляемой с по­мощью электронных стабилизаторов.

1. Обзор литературы по теме

Простейшим стабилизатором напряжения является стабилизатор на крем­ниевом стабилитроне. Для нормальной работы такого стабилизатора необходи­мо, чтобы ток I>СТ>, протекающий через стабилитрон, не был мень­ше, чем I>СТ.МИН>, и больше, чем I>СТ.МАКС>. При изме­нении тока, протекающего через стабилитрон в этих пределах, на нем и на подключенной параллельно ему нагрузке R>H> напряжение, называемое напряжением стабилизации U>СТ> стабилитрона, будет оставаться постоянным. Однако для стабилитронов одного и того же типа это напряжение будет неодинаковым. Поэтому в спра­вочниках приводятся обычно минимальная и максимальная гра­ницы значений напряжения или указывается номинальное нап­ряжение стабилизации U>CT> и его допустимый разброс ΔU>CT>.

177

— о

R1

/Ь-СТ

Рис. 7.22.

Если напряжение U>ВХ>, поступающее на вход стабилизатора (рис. 1.1, а), в процессе работы может изменяться от некоторого наименьшего значения U>BX.МИН> до наибольшего U>BX.МАКС>, то при неизменном напряжении на стабилитроне все изменения вход­ного напряжения должны гаситься на резисторе R1. Поэтому ре­зистор R1 называют гасящим, или балластным. Чтобы при этом изменения тока, протекающего через стабилитрон, не выходили за пределы, ограниченные значениями I>СТ.МИН> и I>СТ.МАКС> с, нужно правильно рассчитать сопротивление этого резистора.

Отношение относительного изменения напряжения на входе стабилизатора
(ΔU>ВХ>/U>ВХ>) к относительному изменению напря­жения на его выходе (ΔU>ВыХ>/U>ВыХ>) называют коэффициентом стабилизации (К>СТ>).

Следовательно,

Стабилизатор на кремниевом стабилитроне имеет еще одно свойство. Дело в том, что стабилитрон обладает очень малым соп­ротивлением переменному (пульсирующему) току, называемым дифференциальным сопротивлением — r>д.ст>. Чем круче характеристика в области пробоя, тем меньше дифферен­циальное сопротивление стабилитрона. Для большинства мало­мощных стабилитронов
r>д.ст>=5...15 Ом. Вместе с резистором R1 дифференциальное сопротивление стабилитрона образует дели­тель (рис. 1.1,б), между плечами которого распределяются как постоянная составляющая выпрямленного напряжения, так и его пульсации. Если амплитуду пульсаций на входе стабилизатора обозначить через U>П.ВХ>, а на выходе — через U>П.ВХ>, то в соответ­ствии с рис. 1.1, б получим


Так как r>д.ст>«R1, то r>д.ст>/(R1+ r>д.ст>)«1 и оказывается, что U>П.ВЫХ>«U>П.ВХ>.

Снижение пульсаций в выходном напряжении свидетельству­ет об уменьшении коэффициента пульсаций. Таким образом, простейший стабилизатор помимо стабилизации выходного нап­ряжения осуществляет сглаживание пульсаций в выходном нап­ряжении.

Важным параметром стабилизатора является его выходное сопротивление (R>ВЫХ>), которое определяется как отношение изменения выходного напряжения стабилизатора к изменению тока нагрузки (ΔI>H>) при неизменном входном напряжении:

Для простейшего стабилизатора R>ВЫХ=> r>д.ст>.

Рассмотренный стабилизатор напряжения на кремниевом ста­билитроне имеет простое устройство, малое количество деталей и с успехом может применяться тогда, когда ток нагрузки не превышает среднего значения тока, протекающего через стабилитрон и находящегося в пределах между I>СТ.МИН >и I>СТ.МАКС>. При использовании стабилитронов типа Д808...Д814 ток нагрузки не должен превышать 20...30 мА. При больших токах нагрузки не­обходимы более мощные стабилитроны. Недостатком простей­шего стабилизатора на кремниевом стабилитроне является потеря части напряжения на ограничительном резисторе R1, что приво­дит к снижению КПД стабилизатора. Кроме того, у этого стаби­лизатора сравнительно небольшой коэффициент стабилизации и значительное выходное сопротивление. Поэтому во всех случаях, когда требуется получить стабилизированное напряжение на наг­рузке при большом токе, протекающем через нее, применяют транзисторные стабилизаторы напряжения. В качестве такового без существенного увеличения числа элементов и усложнения схемы используют транзисторный фильтр со своеобразной сле­дящей системой, которая в зависимости от изменения напряже­ния на входе фильтра или на его выходе за счет изменения тока нагрузки изменяет сопротивление транзистора таким образом, что напряжение на выходе этого фильтра — стабилизатора оста­ется неизменным.

Схема транзисторного стабилизатора напряжения изображе­на на рис. 1.2, а. В нее входит рассмотренный уже стабилизатор на кремниевом стабилитроне VD с ограничительным резистором R1. Нагрузкой стабилизатора служит базовая цепь транзистора VT, в эммитерную цепь которого включена основная нагрузка Rн.

Эмиттерный и коллекторный токи транзистора в десятки раз превышают ток базы, причем Iэ«Iк. Поэтому при токах базы, равных единицам миллиампер, в коллекторной и эмиттерной це­пях протекают токи, измеряемые десятками и сотнями миллиам­пер (мА).

Рассмотрим работу транзисторного стабилизатора. Из рис. 1.2, а видно, что напряжение на нагрузке (U>H>) отличается от напряжения на стабилитроне (U>СТ>) на напряжение, падающее на эмиттерном переходе U>ЭБ> транзистора VT2, т. е.
U>H>=U>CT>-U>ЭБ>. Если напряжение на входе стабилизатора увеличится, оно сразу передастся и на его выход, что приведет к увеличению тока, протекающего через нагрузку I>H>, и напряжения U>H>. Поскольку напряжение на стабилитроне практически не изменяется, воз­растание напряжения на нагрузке вызовет уменьшение напря­жения U>ЭБ>, тока базы транзистора VT и увеличение сопротивле­ния перехода коллектор—эмиттер. Вследствие увеличения соп­ротивления перехода коллектор—эмиттер на этом переходе будет большее падение напряжения, что повлечет за собой уменьшение напряжения на нагрузке. При уменьшении входного напряжения, наоборот, напряжение U>ЭБ> повысится, что повлечет за собой уве­личение тока базы, уменьшение сопротивления перехода коллек­тор—эмиттер и напряжения на этом переходе.

Таким образом, в рассматриваемом стабилизаторе напряже­ния транзистор VT совместно с сопротивлением нагрузки R>H> об­разует делитель входного напряжения, причем сопротивление транзистора изменяется так, что компенсируются всякие изме­нения входного напряжения. Такой стабилизатор называют ком­пенсационным, а транзистор VT с изменяющимся сопротивлени­ем коллекторного перехода — регулирующим.

Выходное сопротивление этого стабилизатора составляет несколько ом, а коэффициент стабилизации примерно такой же, как у простейшего стабили­затора, выполненного на резис­торе R1 и стабилитроне VD. Но так как ток нагрузки через огра­ничительный резистор не про­текает, а сопротивление пос­тоянному току перехода коллек­тор — эмиттер транзистора VT мало, стабилизатор напряжения на транзисторе обладает более высоким КПД по сравнению со стабилизатором на кремниевом стабилитроне. Если вместо VT использовать составной транзис­тор, состоящий из маломощного транзистора VT1 и транзистора большой мощности VT2 (рис. 1.2, б), то можно осуществить эф­фективную стабилизацию напряжения при токах, протекающих через нагрузку, измеряемых амперами.

При таком включении VT1 и VT2 в качестве тока базы мощного транзистора VT2 используется ток эмиттера маломощного (или сред­ней мощности) транзистора VT1, а током нагрузки стабилитрона VD является ток базы VT1, который в десятки раз меньше тока базы VT2.

Важной особенностью транзисторных стабилизаторов напряже­ния является еще следующее. Напряжение на нагрузке U>H> отличает­ся от напряжения стабилизации кремниевого стабилитрона U>CT> на напряжение, падающее на переходе эмиттер—база U>ЭБ> транзистора VT (рис. 1.2, а), т. е. U>H>=U>CT>-U>ЭБ>. Для германиевых транзисто­ров напряжение U>ЭБ> составляет всего 0,2...0,5 В, а для кремниевых — не более 1 В. Поэтому если вместо стабилитрона VD взять стабилит­рон с другим напряжением стабилизации, то изменится и напряже­ние на нагрузке. Это позволяет создавать регулируемые стабилиза­торы напряжения. Одна из схем такого стабилизатора дана на рис. 1.2, в. В ней кроме ограничительного резистора R1 использует­ся дополнительный переменный резистор R>УСТ>, подключаемый па­раллельно стабилитрону VD. Напряжение на нагрузке U>H> вместе с напряжением на переходе эмиттер—база U>ЭБ> транзистора VT равно напряжению U>УСТ>, снимаемому с переменного резистора R>УСТ>, т. е. U>H>+U>ЭБ>=U>УСT>, откуда следует: U>H>=U>УСТ>-U>ЭБ>.

При перемещении движка переменного резистора R>УСТ> будет изменяться снимаемое с него напряжение и, следовательно, напря­жение на нагрузке U>H>. Таким способом можно регулировать нап­ряжение на нагрузке от нуля до значения, равного напряжению стабилизации стабилитрона VD (точнее, до значения U>CT>-U>ЭБ>).

Если ток базы регулирующего транзистора VT1 велик, в ста­билизатор вводят дополнительный усилитель постоянного тока. Одна из схем такого стабилизатора приведена на рис. 1.3. Напряжение, подаваемое с движка потенциометра R3 на базу тран­зистора VT2, на котором выполнен дополнительный усилитель постоянного тока, называется напряжением обратной связи (U>OC>). Из рисунка видно, что U>OC>=U>CТ>+ U>ЭБ>. Ток, протекающий через потенциометр R3, не должен превышать 10...15 мА. Сопротивле­ние резистора R1 обычно составляет несколько килоом.

Коэффициент стабилизации стабилизатора около 100, а выходное сопротивление составляет десятые доли ома.

Расчет компенсационного стабилизатора напряжения начина­ют с выбора регулирующего транзистора VT1. Максимально до­пустимое его напряжение U>КЭ.МАКС> должно превышать наиболь­шее напряжение на входе стабилизатора (U>ВХ.МАКС>), а максималь­но допустимый ток коллектора I>K>>.МАКС> - быть больше предель­ного значения тока нагрузки.

Максимальная мощность, рассеиваемая транзистором VT1, оп­ределяется по формуле:

Значение этой мощности должно составлять не более 75% от максимально допустимой мощности Р>К.МАКС”> приводимой в спра­вочнике. Если это условие невыполнимо, необходимо выбрать другой транзистор — с большим значением Р>К.МАКС>.

Определив по справочнику для выбранного транзистора VT1 минимальное значение статического коэффициента передачи тока базы h>21>>E>, рассчитывают максимальный ток базы, соответ­ствующий максимальному току нагрузки:

Поскольку ток I> макс транзистора VT1 является током нагруз­ки простейшего стабилизатора, состоящего из резистора R1 и стабилитрона VD, то по его значению находят сопротивление ре­зистора R1 по условию:

(U>вх.макс>-U>ст.мин>)/I>ст.мах>≤R1≤(U>вх.мин>-U>ст.мин>)/ (I>ст.мин>-I>Б.макс>)

Сопротивление резистора R2 можно определить по формуле:

R2= U>вых>/I>*(0,05...0,1).

Для нормальной работы стабилизатора требуется, чтобы напря­жение на переходе коллектор—эмиттер транзистора VT1 было не менее 1 В, если транзистор VT1 германиевый, и не менее 3 В — если кремниевый.

Cложность построения рассмотренных стабилизаторов возрастает с увеличением требований к параметрам выходного напряжения.

Задача конструирования высококачественных стабилизаторов напряжения значительно упрощается, если ис­пользовать интегральные стабилизаторы. Эти стабилизаторы от­личаются малыми размерами и в то же время позволяют получить стабильные параметры выходного напряжения, малочувствитель­ные к изменениям температуры, влажности и другим внешним воздействиям.

Примером интегрального стабилизатора напряжения, по­лучившего широкое распространение в радиолюбительской прак­тике, является микросхема серии 142, имеющая множество разновидностей. ИМС этой серии позволяют получать фиксированное выходное напряжение, имеют защиту от перегрузок по току, вы­пускаются в металлополимерных корпусах, могут работать при температурах от -45 до +100°С и весят всего 2,5 г. У них всего три вывода—вход, выход и общий. Корпус микросхемы соединен с металлической пластинкой, в которой имеется от­верстие для крепления на терморассеивающем радиаторе. Несмотря на наличие всего трех выводов, в миниатюрном кристалле этих микросхем выполнено более 17 биполярных транзис­торов, 3 диода, два из которых являются стабилитронами, 19 ре­зисторов и 1 конденсатор.

2. Описание электрической схемы выбранного устройства

В результате анализа технического задания было выяснено, что получить требуемые параметры, используя типовые схемы стабилизаторов не возможно, вследствие сложности проектирования: большое количество каскадов (больше 10) и большое количество элементов обвязки. Расчет такого стабилизатора также будет затруднен необходимостью подбора радиоэлементов по параметрам и согласование каскадов. Оптимальным решением в данном случае будет применение интегрального стабилизатора напряжения. Такие стабилизаторы содержат большое количество транзисторов (больше 10) , подобранных по параметрам, каскады включения согласованы. Не маловажным фактором является и то, что основные каскады стабилизации содержаться в одном корпусе. Это обеспечивает термостабильность (работу стабилизатора при температурах -40С до +100С).

На рис. 2.1 приведена типовая схема включения стабилизатора с обвязкой, необходимой для работы микросхемы.

На приведенной схеме стабилизатора напряжения резисторы R1, R2 и конденсатор C1 составляют обвязку микросхемы, их номиналы содержатся в справочнике по параметрах стабилизаторов.

Резистор R3 - это резистор защиты стабилизатора от перегрузки выходным током.

Пара резисторов R4, R5 задают порог срабатывания тепловой защиты стабилизатора.

Конденсатор C2 позволяет снизить уровень пульсаций и помех при большом входном напряжении.

Конденсатор С3 – для уменьшения броска тока при подключении нагрузки и снижения пульсаций выходного напряжения.

3. Расчёт элементов схемы

Из рассмотренных в справочниках микросхем выбираем интегральный стабилизатор напряжения зарубежного производства LM317T, параметры которого приведены в табл.3.1.

Табл. 3.1

Параметры микросхемы LM317T

Выходное стабилизированное напряжение U>ВЫХ>СТ, В

12…30

Максимальный ток нагрузки стабилизатора I>НАГР>MAX, А

1.5

Максимальное входное напряжение стабилизатора U>ВХ>MAX, В

40

Минимальное входное напряжение стабилизатора U>ВХ>MIN, В

20

Минимальная разность напряжений на входе и выходе стабилизатора

(U>ВХ>-U>ВыХ>)>MIN>, В

4

Ток потребления микросхемы I>ПОТР>, мА

4

Коэффициент стабилизации К>СТ>

50

К>>I>, %

0,5

Температурный коэффициент изменения выходного напряжения ТКU>ВЫХ>, %/К

0,5

Как уже говорилось в предыдущем разделе резисторы R1, R2 и конденсатор C1 составляют обвязку микросхемы, их номиналы были получены из справочника по интегральным стабилизаторам:

R1=1.2 кОм

R2=2 кОм

C1=0.1 мкФ

Резистор R3 - это резистор защиты стабилизатора от перегрузки выходным током. Сопротивление этого резистора определяется по формуле (3.1).

R3=(1.25-0.5*I>ПОТР>-0,023(U>ВХ>- U>ВЫХ>))/I>ПОТР> (3.1)

Подставив необходимые значения в формулу получаем значение сопротивления R3=199 Ом, по которому из ряда Е24, номинальных значений сопротивлений выбираем R3=200 Ом 2%.

Пара резисторов R4, R5 задают порог срабатывания тепловой защиты стабилизатора. Для отключения интегрального стабилизатора на третьей его ножке должно падать 1/3 выходного максимального напряжения, тогда R4/R5=3. Рассчитаем сопротивления так, чтобы рассеиваемая ими мощность не
превышала 0.125 Вт:

R4=(2/3*U>ВЫХ>MAX)/P>РАСС> (3.2)

R5=(1/3*U>ВЫХ>MAX)/P>РАСС> (3.3)

Подставив необходимые значения в формулы (3.2) и (3.3) получили значения R4=160 Ом, R5=80 Ом. Из ряда Е24, номинальных значений сопротивлений выбираем R5=82 Ом 2%, R4=160 Ом 2%.

Конденсатор C2 позволяет снизить уровень пульсаций и помех при большом входном напряжении. В справочнике интегральных стабилизаторов напряжения советуют ставить конденсатор емкостью 10 мкФ и более. Следовательно С2=16 мкФ.

Конденсатор С3 – для уменьшения броска тока при подключении нагрузки и снижения пульсаций выходного напряжения. Вследствие сказанного конденсатор должен иметь достаточно большую емкость (сотни микрофарад) и должен выдерживать напряжение в раза 1.5-3 больше чем максимальное выходное стабилизированное напряжение на выходе интегрального стабилизатора.

Выбираем С3=470 мкФ 5% -50 В.

Мощности резисторов схемы рассчитываются по следующей формуле:

P>R>=U>R>I>R>=U>R>*U>R>/R> >(3.4)

По схеме видно, что мощности всех сопротивлений не будут превышать 0.125 Вт.

В результате проведенных расчетов, получили следующие номинальные значения элементов:

R1 - МЛТ-0.125- 1.2 кОм 5%;

R2 - МЛТ-0.125- 2 кОм 5%;

R3 - МЛТ-0.125- 200 Ом 2%;

R4 - МЛТ-0.125- 160 Ом 2%;

R5 - МЛТ-0.125- 82 Ом 2%;

C1 – К10-7B- 0.1 мкФ ±5%;

C2 – TESLA-16 мкФ ±5%;

C3 – TESLA-50 мкФ ±5%;

DA1 –LM337T;

4. Методика испытания устройства

Методика испытаний данного устройства состоит в замере напряжений на входе и выходе стабилизатора напряжения. Измерения будем проводить при помощи осциллографа, подключенного соответствующими каналами ко входу и выходу стабилизатора напряжения. Для получения входного напряжения для стабилизатора используем понижающий трансформатор (как наиболее простое и распространенное решение), со вторичной обмотки которого снимаем переменное напряжение, которое выпрямляем при помощи диодного моста (двухполупериодного) и подаем на вход рассчитанного стабилизатора, U=20 В. К выходу стабилизатора подключаем нагрузку, рассчитанную по формуле (4.1), R>нагрузки>=10 Ом.

R>нагрузки>=Uвых/ Iвых (4.1)

Схема испытаний приведена в приложении.

Заключение

В данной курсовой работе была рассмотрена методика разработки электронных устройств на стабилизатора напряжения на интегральной микросхеме, рассмотрены основные условия стабилизации напряжения и методы их реализации. Согласно техническому заданию была выбрана и рассчитана схема стабилизатора напряжения.

В результате проделанной работы была создана следующая документация:

- пояснительная записка;

- схема электрическая принципиальная и перечень элементов стабилизатора напряжения;

- чертёж печатной платы и компоновочный эскиз;

- схема испытаний устройства.

Данный стабилизатор может применяться в составе постоянных источников питания радиоаппаратуры.

СПИСОК ЛИТЕРАТУРЫ

1. Борисов В.Г. Кружок радиотехнического конструирования: Пособие для руководителей кружков. — М.: Просвещение, 1986.

2. Забродин Ю.С. Промышленная электроника.

3. Терещук Р.М., Терещук К.М. Полупроводниковые приемно-усилительные устройства: справочник радиолюбителя. — Киев: Наукова думка, 1988.

4. Полупроводниковые приборы: транзисторы, справочник под ред. Горюнова Н.Н. М.: Энергоатомиздат, 1983.


40

3:1

35



2:1

0

5

10

15

20

25

30

35