Химия меди
Министерство Образования Республики Беларусь
Белорусский Национальный Технический Университет
Кафедра Химии
Реферат на тему:
Химия меди
Исполнитель: Кузьмич А.Н. гр. 104312
______________________
Руководитель: Медведев Д.И.
______________________
Минск - 2003
Содержание.
стр. |
||
Введение |
2 |
|
1. |
Историческая справка |
4 |
2. |
Положение меди в периодической системе Д.И. Менделеева |
5 |
3. |
Распространение в природе |
6 |
4. |
Получение |
8 |
5. |
Физические свойства |
10 |
6. |
Химические свойства |
11 |
7. |
Применение |
16 |
8. |
Сплавы меди |
18 |
8.1 |
Латуни |
18 |
8.2 |
Оловянные бронзы |
19 |
8.3 |
Алюминиевые бронзы |
19 |
8.4 |
Кремнистые бронзы |
20 |
8.5 |
Бериллиевые бронзы |
21 |
8.6 |
Сплавы меди с никелем |
21 |
Заключение |
22 |
|
Литература |
24 |
Введение.
Медь (лат. Cuprum) - химический элемент. Один из семи металлов, известных с глубокой древности. По некоторым археологическим данным - медь была хорошо известна египтянам еще за 4000 лет до н. э. Знакомство человечества с медью относится к более ранней эпохе, чем с железом; это объясняется с одной стороны более частым нахождением меди в свободном состоянии на поверхности земли, а с другой сравнительной легкостью получения ее из соединений. Особенно важна медь для электротехники. По электропроводности медь занимает второе место среди всех металлов, после серебра. Однако в наши дни во всем мире электрические провода, на которые раньше уходила почти половина выплавляемой меди, все чаще делают из алюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и многие другие цветные металлы, становится все дефицитнее. Если в 19 в. медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-ные медные руды считаются очень богатыми, а промышленность многих стран перерабатывает руды, в которых всего 0,5% меди.
Медь - необходимый для растений и животных микроэлемент. Основная биохимическая функция меди – это участие в ферментативных реакциях в качестве активатора или в составе медьсодержащих ферментов. Количество меди в растениях колеблется от 0,0001 до 0,05 % (на сухое вещество) и зависит от вида растения и содержания меди в почве. В растениях медь входит в состав ферментов-оксидаз и белка пластоцианина. В оптимальных концентрациях медь повышает холодостойкость растений, способствует их росту и развитию. Среди животных наиболее богаты медью некоторые беспозвоночные (у моллюсков и ракообразных в гемоцианине содержится 0,15-0,26 % меди). Поступая с пищей, медь всасывается в кишечнике, связывается с белком сыворотки крови - альбумином, затем поглощается печенью, откуда в составе белка церулоплазмина возвращается в кровь и доставляется к органам и тканям.
Содержание меди у человека колеблется (на 100 г сухой массы) от 5 мг в печени до 0,7 мг в костях, в жидкостях тела - от 100 мкг (на 100 мл) в крови до 10 мкг в спинномозговой жидкости; всего меди в организме взрослого человека около 100 мг. Медь входит в состав ряда ферментов (например, тирозиназы, цитохромоксидазы), стимулирует кроветворную функцию костного мозга. Малые дозы меди влияют на обмен углеводов (снижение содержания сахара в крови), минеральных веществ (уменьшение в крови количества фосфора) и др. Увеличение содержания меди в крови приводит к превращению минеральных соединений железа в органические, стимулирует использование накопленного в печени железа при синтезе гемоглобина.
При недостатке меди злаковые растения поражаются так называемой болезнью обработки, плодовые - экзантемой; у животных уменьшаются всасывание и использование железа, что приводит к анемии, сопровождающейся поносом и истощением. Применяются медные микроудобрения и подкормка животных солями меди. Отравление медью приводит к анемии, заболеванию печени, болезни Вильсона. У человека отравление возникает редко благодаря тонким механизмам всасывания и выведения меди. Однако в больших дозах медь вызывает рвоту; при всасывании меди может наступить общее отравление (понос, ослабление дыхания и сердечной деятельности, удушье, коматозное состояние).
1. Историческая справка.
Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. Медь и её сплавы сыграли большую роль в развитии материальной культуры. Благодаря лёгкой восстановимости окислов и карбонатов, медь была, по-видимому, первым металлом, который человек научился восстановлять из кислородных соединений, содержащихся в рудах. Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и название ее Сuprum.
В древности для обработки скальной породы её нагревали на костре и быстро охлаждали, причём порода растрескивалась. Уже в этих условиях были возможны процессы восстановления. В дальнейшем восстановление вели в кострах с большим количеством угля и с вдуванием воздуха посредством труб и мехов. Костры окружали стенками, которые постепенно повышались, что привело к созданию шахтной печи. Позднее методы восстановления уступили место окислительной плавке сульфидных медных руд с получением промежуточных продуктов - штейна (сплава сульфидов), в котором концентрируется медь, и шлака (сплава окислов).
2. Положение меди в периодической системе Д.И. Менделеева.
Медь (Cuprum), Сu — химический элемент побочной подгруппы первой группы периодической системы элементов Д.И. Менделеева. Порядковый номер 29, атомная масса 63,54. Распределение электронов в атоме меди — Is22s22p63s23p63d104s1.
Природная медь состоит из смеси 2-х стабильных изотопов с массовыми числами 63 (69,1%) и 65 (30,9%). Сечение захвата тепловых нейтронов атомов меди 3,59-10-28 м-2. Путем бомбардировки никеля протонами или дейтронами искусственно получают радиоактивные изотопы меди 61Сu и 64Сu с периодами полураспада 3,3 и 12,8 ч соответственно. Эти изотопы обладают высокой удельной активностью и используются в качестве меченых атомов.
В химическом отношении медь занимает промежуточное положение между элементами первой плеяды VIII группы и щелочными элементами I группы периодической системы. Ниже приведены значения потенциалов ионизации атомов меди (в эВ):
|
Заполненная d-оболочка меди менее эффективно экранирует s-электрон от ядра, чем оболочка инертного газа, поэтому первый потенциал ионизации меди выше, чем у щелочных металлов. Так как в образовании металлической связи принимают участие и электроны d-оболочки, теплота испарения и температура плавления меди значительно выше, чем у щелочных металлов, что обусловливает более «благородный» характер меди по сравнению с последними. Второй и третий потенциалы ионизации меньше, чем у щелочных металлов, что в значительной степени объясняет проявление свойств меди как переходного элемента, который в степени окисления II и III имеет парамагнитные свойства окрашенных ионов и комплексов. Медь(I) также образует многочисленные соединения по типу комплексов переходных металлов (табл. 1).
Таблица 1
Состояние окисления и стереохимия соединений меди.
Состояние окисления |
Координационное число |
Геометрия |
Примеры соединений |
Cu(I) d10 |
2 |
Линейная |
Cu>2>O |
3 |
Плоская |
K[Cu(CN)>2>] |
|
4 |
Тетраэдр |
Cu(I) |
|
Cu(II) d9 |
4 |
Тетраэдр (искажённый) |
Cs[CuCl>4>] |
5 |
Тригональная бипирамида |
[Cu(Dipy)>2>I]+ |
|
5 |
Квадратная пирамида |
[Cu(ДМГ)>2>]>2>(тв) |
|
4 |
Квадрат |
CuO |
|
6 |
Октаэдр (искажённый) |
K>2>CuF>4>, CuCl>2> |
|
Cu(III) d8 |
4 |
Квадрат |
KCuO>2> |
6 |
Октаэдр |
K>3>CuF>6> |
П р и м е ч а н и е. Dipy – дипиридил; ДМГ – диметилглиоксим.
3. Распространение в природе.
Среднее содержание меди в земной коре 4,7-10-3 % (по массе), в нижней части земной коры, сложенной основными породами, её больше (1-10-2 %), чем в верхней (2-10-3 %), где преобладают граниты и другие кислые изверженные породы. Медь энергично мигрирует как в горячих водах глубин, так и в холодных растворах биосферы; сероводород осаждает из природных вод различные сульфиды меди, имеющие большое промышленное значение. Среди многочисленных минералов меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная медь, карбонаты и окислы.
Медь - важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2-10-4 %, известны организмы - концентраторы меди. В таёжных и других ландшафтах влажного климата медь сравнительно легко выщелачивается из кислых почв, здесь местами наблюдается дефицит меди и связанные с ним болезни растений и животных (особенно на песках и торфяниках). В степях и пустынях (с характерными для них слабощелочными растворами) медь малоподвижна; на участках месторождений меди наблюдается её избыток в почвах и растениях, отчего болеют домашние животные.
В речной воде очень мало меди, 1-10-7 %. Приносимая в океан со стоком медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены медью (5,7-10-3 %), а морская вода резко недосыщена медью (3-10-7 %).
В морях прошлых геологических эпох местами происходило значительное накопление меди в илах, приведшее к образованию месторождений (например, Мансфельд в Германии). Медь энергично мигрирует и в подземных водах биосферы, с этими процессами связано накопление руд меди в песчаниках.
Медь образует до 240 минералов, однако лишь около 40 имеют промышленное значение.
Различают сульфидные и окисленные руды меди. Промышленное значение имеют сульфидные руды, из которых наиболее широко используется медный колчедан (халькопирит) CuFeS>2>. В природе он встречается главным образом в смеси с железным колчеданом FeS>2> и пустой породой, состоящей из оксидов Si, Al, Ca и др. Часто сульфидные руды содержат примеси благородных металлов (Аи, Ag), цветных и редких металлов (Zn, Pb, Ni, Co, Mo и др.) и рассеянных элементов (Ge и др.).
Содержание меди в руде обычно составляет 1—5%, но благодаря легкой флотируемости халькопирита его можно обогащать, получая концентрат, содержащий 20% меди и более [1845]. Наиболее крупные запасы медных руд сосредоточены главным образом на Урале, в Казахстане, Средней Азии, Африке (Катанта, Замбия), Америке (Чили, США, Канада).
4. Получение.
Медные руды характеризуются невысоким содержанием меди. Поэтому перед плавкой тонкоизмельчённую руду подвергают механическому обогащению; при этом ценные минералы отделяются от основной массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный).
В мировой практике 80 % меди извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего родства меди к сере, а компонентов пустой породы и железа к кислороду, медь концентрируется в сульфидном расплаве (штейне), а окислы образуют шлак. Штейн отделяют от шлака отстаиванием.
На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь подачи 300 м2 и более (30 м; 10 м), необходимое для плавления тепло получают сжиганием углеродистого топлива (естественный газ, мазут, пылеуголь) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).
Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, - процессы несовершенные. Сульфиды, составляющие основную массу медных концентратов, обладают высокой теплотворной способностью. Поэтому всё больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель - подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскалённую до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка). Можно окислять сульфиды и в жидком состоянии; эти процессы усиленно исследуются в СССР и за рубежом (Япония, Австралия, Канада) и становятся главным направлением в развитии пирометаллургии сульфидных медных руд.
Богатые кусковые сульфидные руды (2-3 % Cu) с высоким содержанием серы (35-42 % S) в ряде случаев непосредственно направляются на плавку в шахтных печах (печи с вертикально расположенным рабочим пространством). В одной из разновидностей шахтной плавки (медно-серная плавка) в шихту добавляют мелкий кокс, восстановляющий в верхних горизонтах печи SO>2> до элементарной серы. Медь в этом процессе также концентрируется в штейне.
Получающийся при плавке жидкий штейн (в основном Cu>2>S, FeS) заливают в конвертер - цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания окислов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической меди и SO>2>. Эту черновую медь разливают в формы. Слитки (а иногда непосредственно расплавленную черновую медь) с целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и частично Ni и другие в виде окислов переходят в шлак, а сера (в виде SO>2>) удаляется с газами. После удаления шлака медь для восстановления растворённой в ней Cu>2>O "дразнят", погружая в жидкий металл концы сырых берёзовых или сосновых брёвен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором CuSO>4>, подкислённым H>2>SO>4>. Они служат анодами. При пропускании тока аноды растворяются, а чистая медь отлагается на катодах - тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную медь промывают водой и переплавляют. Благородные металлы, Se, Te и другие ценные спутники меди концентрируются в анодном шламе, из которого их извлекают специальной переработкой.
Наряду с пирометаллургическими применяют также гидрометаллурги-ческие методы получения меди (преимущественно из бедных окисленных и самородных руд). Эти методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах H>2>SO>4> или аммиака. Из раствора меди, либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Весьма перспективны применительно к смешанным рудам комбинированные гидрофлотационные методы, при которых кислородные соединения меди растворяются в сернокислых растворах, а сульфиды выделяются флотацией. Получают распространение и автоклавные гидрометаллургические процессы, идущие при повышенных температурах и давлении.
5. Физические свойства.
Техническая медь — металл красного, в изломе розового цвета, при просвечивании в тонких слоях — зеленовато-голубой. Имеет гранецентрированную кубическую решетку с параметром а = 0,36074 нм, плотность 8,96 кг/м3 (20° С). Ионные радиусы меди (в нм) приведены ниже:
-
По Белову и Бокию
По Гольдшмидту
По Полингу
Cu+
0,098
0,095
0,096
Cu2+
0,080
0,070
—
Основные физические свойства меди
Температура плавления, °С 1083
Температура кипения, °С 2600
Теплота плавления, кДж/г-ат. 0,7427
Теплота испарения, кДж/г-ат. 17,38
Удельная теплоемкость, Дж/(г.град) (20°С) 0,022
Теплопроводность, Дж/(м.град.с) (20°С) 2,25-10-3
Электрическое сопротивление, Ом.м (20°С) 1,68-Ю-4
Удельная магнитная восприимчивость, 0,086.10-6
абс. эл.-магн. ед./г (18 °С)
Медь — вязкий, мягкий и ковкий металл, уступающий только серебру высокой теплопроводностью и электропроводностью. Эти качества, а также пластичность и сопротивление коррозии обусловили широкое применение меди в промышленности.
6. Химические свойства.
Медь — электроположительный металл. Относительную устойчивость ее ионов можно оценить на основании следующих данных:
Cu2+ + e → Cu+ E0 = 0,153 B,
Сu+ + е → Сu0 E0 = 0,52 В,
Сu2+ + 2е → Сu0 E0 = 0,337 В.
Медь вытесняется из своих солей более электроотрицательными элементами и не растворяется в кислотах, не являющихся окислителями. Медь растворяется в азотной кислоте с образованием Cu(NO>3>)>2> и оксидов азота, в горячей конц. H>2>SO>4> — с образованием CuSO>4> и SO>2. >В нагретой разбавленной H>2>SO>4> медь растворяется только при продувании через раствор воздуха.
Стандартные окислительно-восстановительные потенциалы ионов меди в водных растворах по отношению к водородному электроду при 25° С приведены в табл. 2.
Таблица 2.
Стандартные окислительно-восстановительные потенциалы ионов меди.
-
Уравнение полуреакции
EL В
HCuO>2>- + ЗН+ + е = Сu+ + 2Н>2>О
1,73
CuO>2>2- + 4Н+ + е = Сu+ + 2Н>2>О
2,51
HCuO>2>- + ЗН+ + 2е = Сu0 + 2Н>2>О
1,13
СuО>2>2- + 4Н+ + 2е = Сu0 + 2Н>2>О
1,52
2Сu2+ + Н>2>О + 2е = Сu>2>О + 2Н+
0,20
2НСuО>2>- + 4Н+ + 2е = Сu>2>О + ЗН>2>О
1,78
2CuO>2>2- + 6Н+ +2е = Сu>2>О + ЗН>2>О
2,56
СuО + 2Н+ + е = Сu+ + Н>2>0
0,62
Сu2+ + Вr - + е = СuВr
0,64
Сu2+ + Сl- + е = CuCl
0,54
Сu2+ + I- + е = CuI
0,86
Cu(NH>3>)>4>2+ + е = Cu(NH>3>)>2>+ + 2NH>3>
-0,01
Cu(NH>3>)>2>+ + е = Сu0 + 2NH>3>
-0,12
Cu(NH>3>)>4>2+ + 2e = Cu0 + 4NH>3>
-0,07
Химическая активность меди невелика, при температурах ниже 185°С с сухим воздухом и кислородом не реагирует. В присутствии влаги и СО>2> на поверхности меди образуется зеленая пленка основного карбоната. При нагревании меди на воздухе идет поверхностное окисление; ниже 375°С образуется СuО, а в интервале 375—1100°С при неполном окислении меди — двухслойная окалина (СuО + Сu>2>О). Влажный хлор взаимодействует с медью уже при комнатной температуре, образуя хлорид меди(II), хорошо растворимый в воде. Медь реагирует и с другими галогенами.
Особое сродство проявляет медь к сере: в парах серы она горит. С водородом, азотом, углеродом медь не реагирует даже при высоких температурах. Растворимость водорода в твердой меди незначительна и при 400°С составляет 0,06 г в 100 г меди. Присутствие водорода в меди резко ухудшает ее механические свойства (так называемая "водородная болезнь"). При пропускании аммиака над раскаленной медью образуется Cu>2>N. Уже при температуре каления медь подвергается воздействию оксидов азота: N>2>O и NO взаимодействуют с образованием Сu2О, a NO2 — с образованием СuО. Карбиды Сu2С2 и СuС2 могут быть получены действием ацетилена на аммиачные растворы солей меди. Окислительно-восстановительные равновесия в растворах солей меди в обеих степенях окисления осложняются легкостью диспропорционирования меди(I) в медь(0) и медь(II), поэтому комплексы меди(I) обычно образуются только в том случае, если они нерастворимы (например, CuCN и Cul) или если связь металл—лиганд имеет ковалентный характер, а пространственные факторы благоприятны.
Исследование комплексных соединений меди(П) может быть проведено методами протонного резонанса и ЭПР. Большое число работ по ЭПР комплексных соединений меди(II) обусловлено устойчивостью этого состояния окисления меди и относительно узкими линиями спектра ЭПР меди(П) в широком интервале температур.
Спектры ЭПР комплексов меди(II) в растворах часто имеют хорошо разрешенную сверхтонкую структуру из четырех линий от ядер 63 Сu и 65Сu, ядерный спин которых 3/>2>.Так как магнитные моменты ядер 63Сu и 65Сu несколько различаются, то в случае узких линий сверхтонкой структуры, например для серосодержащих комплексов, в спектрах ЭПР видны разрешенные линии от ядер 63Сu и 65Сu. При интерпретации спектров ЭПР необходимо учитывать сосуществование в растворах, как правило, нескольких комплексов. Ниже кратко рассматриваются химические свойства меди в различных степенях окисления.
Медь(I). Комплексы меди(I) обычно имеют (в зависимости от природы лиганда) линейное или тетраэдрическое строение. Ионы меди(I) содержат десять 3d-электронов и обычно образуют четырех координированные тетраэдрические структуры типа [CuCl>4>]3-. Однако с сильноосновными высокополяризованными или легко поляризующимися лигандами медь(I) образует двухкоординированные линейные комплексы.
В соединениях меди(I) ион имеет конфигурацию 3d'°, поэтому они диамагнитны и бесцветны. Исключение составляют случаи, когда окраска обусловлена анионом или поглощением в связи с переносом заряда. Относительная устойчивость ионов Сu+ и Сu2+ определяется природой анионов или других лигандов. Примерами устойчивого в воде соединения меди(I) являются малорастворимые CuCl и CuCN, соли Cu>2>SO>4> и других оксоанионов можно получить в неводной среде. В воде они быстро разлагаются, образуя медь металлическую и соли меди(I). Неустойчивость солей меди(I) в воде обусловлена отчасти повышенными значениями энергии решетки и энергии сольватации для иона меди(П), вследствие чего соединения меди(I) неустойчивы.
Оксид меди(I) Сu>2>О красного цвета, незначительно растворяется в воде. При взаимодействии сильных щелочей с солями меди(I) выпадает желтый осадок, переходящий при нагревании в осадок красного цвета, по-видимому, Cu>2>O. Гидроксид меди(I) обладает слабыми основными свойствами, он несколько растворим в концентрированных растворах щелочей.
Медь(II). Двухзарядный положительный ион меди является ее наиболее распространенным состоянием. Большинство соединений меди(I) очень легко окисляется в соединения двухвалентной меди, но дальнейшее окисление до меди(Ш) затруднено.
Конфигурация 3d9 делает ион меди(II) легко деформирующимся, благодаря чему он образует прочные связи с серосодержащими реагентами (ДДТК, этилксантогенатом, рубеановодородной кислотой, дитизоном). Основным координационным полиэдром для двухвалентной меди является симметрично удлиненная квадратная бипирамида. Тетраэдрическая координация для меди(П) встречается довольно редко и в соединениях с тиолами, по-видимому, не реализуется.
Большинство комплексов меди(II) имеет октаэдрическую структуру, в которой четыре координационных места заняты лигандами, расположенными к металлу ближе, чем два других лиганда, находящихся выше и ниже металла. Устойчивые комплексы меди(II) характеризуются, как правило, плоскоквадратной или октаэдрической конфигурацией. В предельных случаях деформации октаэдрическая конфигурация превращается в плоскоквадратную. Большое аналитическое применение имеют внешнесферные комплексы меди.
СuО встречается в природе и может быть получен при накаливании металлической меди на воздухе, хорошо растворяется в кислотах, образуя соответствующие соли.
Гидроксид меди(II) Сu(ОН)>2> в виде объемистого осадка голубого цвета может быть получен при действии избытка водного раствора щелочи на растворы солей меди(II). ПР(Сu(ОН)-) = 1,31.10-20. В воде этот осадок малорастворим, а при нагревании переходит в СuО, отщепляя молекулу воды. Гидроксид меди(II) обладает слабо выраженными амфотерными свойствами и легко растворяется в водном растворе аммиака с образованием осадка темно-синего цвета. Осаждение гидроксида меди происходит при рН 5,5.
Последовательные значения констант гидролиза для ионов меди(II) равны: рК>1>>гидр> = 7,5; рК>2>>гидр> = 7,0; рК>3>>гидр> = 12,7; рК>4>>гидр> = 13,9. Обращает на себя внимание необычное соотношение pK>1>>гидр> > рК>2>>гидр>. Значение рК = 7,0 вполне реально, так как рН полного осаждения Сu(ОН)>2> равно 8—10. Однако рН начала осаждения Сu(ОН)>2> равно 5,5, поэтому величина рК>1гндр> = 7,5, очевидно, завышена. Гидролиз ионов меди(II) в водных растворах протекает по схеме:
Сu2+ + n Н>2>0 = Cu(OH)>n>2-n + n Н+; (n = 1; 2).
1-я и 2-я константы гидролиза равны 109 и 1017 соответственно и не зависят от концентрации меди в пределах 4-1 0"4 — 1 М.
Медь(III). Доказано, что медь(III) с конфигурацией 3d8 может существовать в кристаллических соединениях и в комплексах, образуя анионы — купраты. Купраты некоторых щелочных и щелочноземельных металлов можно получить, например, нагреванием смеси оксидов в атмосфере кислорода. КСuО>2> — это диамагнитное соединение голубовато-стального цвета.
При действии фтора на смесь КСl и СuСl>2> образуются светло-зеленые кристаллы парамагнитного соединения К>3>СuF>6>.
При окислении щелочных растворов меди(II), содержащих периодаты или теллураты, гипохлоритом или другими окислителями образуются диамагнитные комплексные соли состава K>7>[Cu(IO>6>)>2>].7H>2>O. Эти соли являются сильными окислителями и при подкислении выделяют кислород.
Соединения меди(Ш). При действии спиртового раствора щелочи и пероксида водорода на охлажденный до 50° спиртовой раствор хлорида меди(II) выпадает коричнево-черный осадок пероксида меди СuО>2>. Это соединение в гидратированной форме можно получить при действии пероксида водорода на раствор соли сульфата меди, содержащего в небольших количествах Na>2>CO>3>. Суспензия Сu(ОН)>2> в растворе КОН взаимодействует с хлором, образуя осадок Сu>2>О>3> красного цвета, частично переходящий в раствор.
7. Применение.
Большая роль меди в технике обусловлена рядом её ценных свойств и, прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам медь - это основной материал для проводов; свыше 50 % добываемой меди применяют в электротехнической промышленности. Все примеси понижают электропроводность меди, а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9 % Cu. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30-40 % меди используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50 % Zn) и различные виды бронз; оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. (подробнее см. Сплавы меди). Кроме нужд тяжёлой промышленности, связи, транспорта, некоторое количество меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шёлка.
Медь как художественный материал используется с медного века (украшения, скульптура, утварь, посуда). Кованые и литые изделия из меди и сплавов украшаются чеканкой, гравировкой и тиснением. Лёгкость обработки меди (обусловленная её мягкостью) позволяет мастерам добиваться разнообразия фактур, тщательности проработки деталей, тонкой моделировки формы. Изделия из меди отличаются красотой золотистых или красноватых тонов, а также свойством обретать блеск при шлифовке. Медь нередко золотят, патинируют, тонируют, украшают эмалью. С 15 века медь применяется также для изготовления печатных форм.
В медицине сульфат меди применяют как антисептическое и вяжущее средство в виде глазных капель при конъюнктивитах и глазных карандашей для лечения трахомы. Раствор сульфата меди используют также при ожогах кожи фосфором. Иногда сульфат меди применяют как рвотное средство. Нитрат меди употребляют в виде глазной мази при трахоме и конъюнктивитах.
8. Сплавы меди.
Для деталей машин используют сплавы меди с цинком, оловом, алюминием, кремнием и др. (а не чистую медь) из-за их большей прочности: 30-40 кгс/мм2 у сплавов и 25-29 кгс/мм2 у технически чистой меди.
Медные сплавы (кроме бериллиевой бронзы и некоторых алюминиевых бронз) не принимают термической обработки, и их механические свойства и износостойкость определяются химическим составом и его влиянием на структуру. Модуль упругости медных сплавов (900-12000 кгс/мм2 ниже, чем у стали).
Основное преимущество медных сплавов - низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.
Величина коэффициента трения практически одинакова у всех медных сплавов, тогда как механические свойства и износостойкость, а также поведение в условиях коррозии зависят от состава сплавов, а, следовательно, от структуры. Прочность выше у двухфазных сплавов, а пластичность у однофазных.
8.1 Латуни.
Латунями называют сплавы меди и цинка. Медь может растворять цинк в любом количестве. По химическому составу различают латуни простые и сложные, а по структуре - однофазные и двухфазные. Простые латуни легируются одним компонентом: цинком.
Однофазные простые латуни имеют высокую пластичность; она наибольшая у латуней с 30-32% цинка (латуни Л70 , Л67). Латуни с более низким содержанием цинка (томпаки и полутомпаки) уступают латуням Л68 и Л70 в пластичности, но превосходят их в электро- и теплопроводности. Они поставляются в прокате и поковках.
Двухфазные простые латуни имеют хорошие ковкость (но главным образом при нагреве) и повышенные литейные свойства и используются не только в виде проката, но и в отливках. Пластичность их ниже, чем у однофазных латуней, а прочность и износостойкость выше за счет влияния более твердых частиц второй фазы.
Прочность простых латуней 30-35 кгс/мм2 при однофазной структуре и 40-45 кгс/мм2 при двухфазной. Прочность однофазной латуни может быть значительно повышена холодной пластической деформацией. Эти латуни имеют достаточную стойкость в атмосфере воды и пара (при условии снятия напряжений, создаваемых холодной деформацией).
8.2 Оловянные бронзы.
Однофазные и двухфазные бронзы превосходят латуни в прочности и сопротивлении коррозии (особенно в морской воде).
Однофазные бронзы в катаном состоянии, особенно после значительной холодной пластической деформации, имеют повышенные прочностные и упругие свойства (δ>= 40 кгс/мм2).
Для двухфазных бронз характерна более высокая износостойкость.
Важное преимущество двухфазных оловянистых бронз - высокие литейные свойства; они получают при литье наиболее низкий коэффициент усадки по сравнению с другими металлами, в том числе чугунами. Оловянные бронзы применяют для литых деталей сложной формы. Однако для арматуры котлов и подобных деталей они используются лишь в случае небольших давлений пара. Недостаток отливок из оловянных бронз - их значительная микропористость. Поэтому для работы при повышенных давлениях пара они все больше заменяются алюминиевыми бронзами. Из-за высокой стоимости олова чаще используют бронзы, в которых часть олова заменена цинком (или свинцом).
8.3 Алюминиевые бронзы.
Эти бронзы (однофазные и двухфазные) все более широко заменяют латуни и оловянные бронзы.
Однофазные бронзы в группе медных сплавов имеют наибольшую пластичность (δ до 60%). Их используют для листов (в том числе небольшой толщины) и штамповки со значительной деформацией. После сильной холодной пластической деформации достигаются повышенные прочность и упругость. Двухфазные бронзы подвергают горячей деформации или применяют в виде отливок. У алюминиевых бронз литейные свойства (жидкотекучесть) ниже, чем у оловянных; коэффициент усадки больше, но они не образуют пористости, что обеспечивает получение более плотных отливок. Литейные свойства улучшаются введением в указанные бронзы небольших количеств фосфора. Бронзы в отливках используют, в частности, для котельной арматуры сравнительно простой формы, но работающей при повышенных напряжениях.
Кроме того, алюминиевые двухфазные бронзы, имеют более высокие прочностные свойства, чем латуни и оловянные бронзы. У сложных алюминиевых бронз, содержащих никель и железо, прочность составляет 55-60 кгс/мм2.
Все алюминиевые бронзы, как и оловянные, хорошо устойчивы против коррозии в морской воде и во влажной тропической атмосфере.
Алюминиевые бронзы используют в судостроении, авиации, и т.д. В виде лент, листов, проволоки их применяют для упругих элементов, в частности для токоведущих пружин.
8.4 Кремнистые бронзы.
Применение кремнистых бронз ограниченное. Используются однофазные бронзы как более пластичные. Они превосходят алюминиевые бронзы и латуни в прочности и стойкости в щелочных (в том числе сточных) средах.
Эти бронзы применяют для арматуры и труб, работающих в указанных средах.
Кремнистые бронзы, дополнительно легированные марганцем, в результате сильной холодной деформации приобретают повышенные прочность и упругость и в виде ленты или проволоки используются для различных упругих элементов.
8.5 Бериллиевые бронзы.
Бериллиевые бронзы сочетают очень высокую прочность (σ до 120 кгс/мм2) и коррозионную стойкость с повышенной электропроводностью.
Однако эти бронзы из-за высокой стоимости бериллия используют лишь для особо ответственных в изделиях небольшого сечения в виде лент, проволоки для пружин, мембран, сильфонов и контактах в электрических машинах, аппаратах и приборах. Указанные свойства бериллиевые бронзы после закалки и старения, т.к. растворимость бериллия в меди уменьшается с понижением температуры.
Выделение при старении частиц химического соединения CuBe повышает прочность и уменьшает концентрацию бериллия в растворе меди.
8.6 Сплавы меди с никелем.
Никель сильно повышает твердость меди. Сплав 50% Сu и 50% Ni обладает наибольшей твердостью. Кроме высокой твердости, эти сплавы обладают пониженной электропроводностью, вследствие чего употребляются в электротехнике.
Хорошие механические свойства, высокая стойкость против коррозии во многих средах, ценные физические свойства в сочетании с простотой плавки, литья и обработки давлением обусловили широкое применение медных сплавов в многочисленных отраслях техники: в авиа-, авто-, судостроении, химической промышленности, станкостроении, электротехнике, приборостроении, в производстве паровой и водяной арматуры, посуды, художественных и других изделий.
Заключение.
Медь является одним из металлов, известных с древнейших времён, и в настоящее время занимает второе место (после алюминия) по объёму промышленного производства.
Медь применяется для изготовления кабелей, токопроводящих частей электрических установок, теплообменников. Она является основным компонентом латуней бронз, медно-никелевых и других сплавов, обладающих высокими антифрикционными свойствами, сочетающимися с хорошей коррозионной стойкостью на воздухе. Эти сплавы характеризуются, кроме того, хорошей электрической проводимостью.
Медь - металл сравнительно мало активный. В сухом воздухе и кислороде при нормальных условиях медь не окисляется. Она достаточно легко вступает в реакции с галогенами, серой, селеном. А вот с водородом, углеродом и азотом медь не взаимодействует даже при высоких температурах. Кислоты, не обладающие окислительными свойствами, на медь не действуют.
Чистая медь - тягучий, вязкий металл красного, в изломе розового цвета, в очень тонких слоях на просвет медь выглядит зеленовато-голубой. Эти же цвета, характерны и для многих соединений меди, как в твердом состоянии, так и в растворах.
Медь широко используется в промышленности из-за:
высокой теплопpоводимости
высокой электpопpоводимости
ковкости
хороших литейных качеств
большого сопротивления на pазpыв
химической стойкости
Физические и химические свойства меди зависят от степени ее чистоты. Примеси меди в продуктах различных производств также влияют на свойства этих материалов. Поэтому во многих производственных лабораториях проводится контроль содержания меди. Большое число публикаций посвящено определению меди в биологических объектах, особенно в крови, так как медь играет большую роль в биохимических процессах, протекающих в организме, и является индикатором некоторых заболеваний. При аналитическом контроле используют как классические химические методы, так и физические, требующие совершенной инструментальной техники и позволяющие с высокой чувствительностью определять медь в присутствии многих других элементов часто без разрушения образца. Переработка медных руд невозможна без предварительного фазового анализа.
Медь входит в число жизненно важных микроэлементов. Она участвует в процессе фотосинтеза и усвоении растениями азота, способствует синтезу сахара, белков, крахмала, витаминов. Чаще всего медь вносят в почву в виде пятиводного сульфата - медного купороса. В значительных количествах он ядовит, как и многие другие соединения меди, особенно для низших организмов. В малых же дозах медь совершенно необходима всему живому.
Литература.
Подчайнова В.Н., Медь, (М., Свердловск: Металургиздат, 1991. – 249с.);
Смирнов В. И., Металлургия меди и никеля, (М., Свердловск , 1950. – 234с.);
Газарян Л. М., Пирометаллургия меди, (М., 1960. – 189с.);
Справочник металлурга по цветным металлам, под редакцией Н. Н. Мурача, (2 изд., т. 1, М., 1953, т. 2, М., 1947. – 211с.);