Реакции С и О ацилирования

1


Введение.

Реакции ацилирования обладают очень многими полезными свойствами. Они позволяют вести в молекулу функциональную группу C=O путем реакций присоединения либо замещения, не подвергая исходную молекулу окислению (восстановлению). Таким образом, можно получать соединения различных классов: а) амиды; б) сложные эфиры; в) ангидриды карбоновых кислот; г) кетоны и другие полезные соединения. Неудивительно, что реакции ацилирования находят широкое применение в промышленности и в химических исследованиях. В своем докладе я рассмотрю три наиболее важных типа реакций ацилирования C-ацилирование, O-ацилирование и N-ацилирование.

Реакции C-ацилирования.

Наиболее часто в реакциях С-ацилирования используются металлоорганические соединения (реактивы Гриньяра, кислоты Льюиса, соединения алкила с металлом, алкоголяты металлов, а также комплексные соли с алкильными лигандами).

Реакция алкил-де-галогенирования.

Рассмотрим реакцию алкил-де-галогенирования (превращения ацилгалогенидов в кетоны с помощью металлоорганических соединений). Ацилгалогениды гладко и в мягких условиях взаимодействуют с диалкилкупратами лития, давая с высокими выходами кетоны. Это происходит по следующей схеме:

Г
руппа R' может быть первичной, вторичной или третичной алкильной или арильной; она может содержать йодо-, кето-, нитро-, циано- и сложноэфирные группы. Успешно проведены реакции, в которых группа R была метильной, первичной алкильной и винильной. Вторичные и третичные алкильные группы можно ввести, если вместо R>2>CuLi использовать PhS(R)CuLi. Группа R может быть и алкинильной, если в качестве реагента применяется ацетиленид меди R’’CCСu.

Другой тип металлоорганических реагентов, которые дают хорошие выходы кетонов при обработке ацилгалогенидами, - это кадмийорганические соединения R>2>Cd (получаемые из реактивов Гриньяра) В этом случае группа R может быть арильной или первичной алкильной. Вторичные и третичные алкилкадмиевые реагенты оказываются, как правило, недостаточно устойчивыми, чтобы служить полезными реагентами в этой реакции. Как в R’COX, так и в R­>2>Cd может присутствовать сложноэфирная группа. Цинкорганические соединения ведут себя аналогично, но используются реже. Ртутьорганические соединения и тетраалкилсиланы также вступают в эту реакцию при катализе AlX>3>.

Реакция алкил-де-ацилокси-замещения.

Т
акже интересна реакция алкил-де-ацилокси-замещения (превращение ангидридов, сложных эфиров и амидов карбоновых кислот в кетоны с помощью металлоорганических соединений), с помощью котрой можно получать кетоны из соединений других классов.

Как и ацилгалогениды, ангидриды и сложные эфиры карбоновых кислот при обработке реактивами Гриньяра дают третичные спирты. Для увеличения выхода кетона применяют низкие температуры и обратный порядок смешения реагентов.

Реакции сочетания ацилгалогенидов.

Известны также интересные реакции сочетания ацилгалогенидов, в результате которых можно получать симметричные -дикетоны.

П
ри действии пирофорного свинца ацилгалогениды вступают в реакцию сочетания, аналогичную реакции Вюрца:

А
налогично проходит реакция бензоилхлорида под действием ультразвука в присутствии литиевой проволоки с образованием бензила:

Реакции ацилирования кетонов ангидридами.

Ацилирование кетонов ангидридами в присутствии трифторида бора в качестве катализатора приводит к -дикетонам. В случае несимметричных кетонов ацилирование идет главным образом по наиболее замещенному положению:

Продуктом является комплекс, содержащий BF>2>, который под действием водного ацетата натрия разлагается с образованием ацилированного кетона. Следовательно, трифторид бора и кетон надо брать в эквимолярных соотношениях.

Реакции ацилирования сложных эфиров сложными эфирами. Конденсации Кляйзена и Дикмана.

П

ри обработке сложных эфиров, содержащих атом водорода в -положении, сильным основанием (этилат натрия), происходит конденсация, приводящая к -кетоэфирам. Эта реакция называется конденсацией Кляйзена:

Н
еобходимо отметить, что реакция идет еще дальше с образованием карбаниона и этилового спирта. Это очень важный процесс, так как он смещает равновесие вправо и позволяет получить желаемый продукт:

Когда в реакцию вводят смесь двух различных сложных эфиров, каждый из которых содержит -атом водорода, то обычно получается смесь всех четырех возможных продуктов; вследствие этого реакция редко используется в синтетических целях. Однако, если атом водорода в -положении имеется только в одном из сложных эфиров, смешанная реакция часто дает удовлетворительные результаты.

Е
сли две сложноэфирные группы, участвующие в конденсации, находятся в одной молекуле, в результате получается циклический -кетоэфир; такая реакция называется конденсацией Дикмана:

Наилучшие результаты при конденсации Дикмана получены для синтеза пяти-, шести- и семичленных циклов. Реакции, приводящие к циклам с числом атомов в кольце от 9 до 12, идут с очень низким выходом или не идут совсем; циклы большего размера синтезированы с использованием метода высокого разбавления.

Реакция ацилирования Фриделя-Крафтса.

Данная реакция позволяет присоединять к бензолу ацильный радикал. В присутствии кислот Льюиса хлорангидриды и ангидриды кислот дают ион ацилия R–C+=O, который действует как эффективный электрофильный реагент, приводя к образованию кетона:





Получающийся кетон образует комплекс с хлористым алюминием извлекая его тем самым из сферы реакции. Таким образом, для завершения реакции необходимо значительно больше одного эквивалента катализатора.

И

меются, однако, некоторые указания, согласно которым, если бы комплекс с AlCl>3 >не возникал, то кетон образовывал бы комплекс с ионом ацилия, который не мог бы атаковать основной субстрат, в данном случае бензол.

П
ричем если радикал имеет сильно разветвленное строение, то может происходить отщепление C=O, и в этом случае вместо ожидаемого ацилирования будет наблюдаться алкилирование субстрата:

Интересным примером использования реакции Фриделя-Крафтса может быть следующая двухстадийная и весьма важная в синтетическом отношении реакция:

Р
еакции N-ацилирования.

Ацилирование аминов ацилгалогенидами.

Р
еакции амино-де-галогенирования наиболее часто используются для синтеза амидов. Действие аммиака или аминов на ацилгалогениды представляет собой общий метод синтеза амидов.

Реакция сильно экзотермична и требует тщательного контроля, обычно охлаждением или разбавлением. При использовании аммиака получают незамещенные амиды, из первичных аминов получают N-замещенные амиды, а из вторичных аминов – N,N-дизамещенные амиды. Аналогично можно ацилировать ариламины. В некоторых случаях для связывания выделяющейся галогеноводородной кислоты добавляют водный раствор щелочи. Такая реакция носит название метода Шоттена-Баумана.

Г
идразин и гидроксиламин также реагируют с ацилгалогенидами, давая соответственно гидразиды RCONHNH>2> и гидроксамовые кислоты RCONHOH; эта реакция часто используется для синтеза данных соединений. Если вместо ацилгалогенида взять фосген, то как ароматические, так и алифатические первичные амины дают хлороформамиды ClCONHR, которые теряя HCl, превращаются в изоцианаты RNCO. Это один из наиболее распространенных методов синтеза изоцианатов.

Т
иофосген при аналогичной обработке дает изотиоцианаты. Фосген в этой реакции можно заменить более безопасным трихлорометилхлороформиатом. При действии первичных аминов на хлороформиаты ROCOCl получаются карбаматы ROCONHR’. Примером этой реакции служит защита аминогруппы в аминокислотах и пептидах действием карбобензоксихлорида:

Аминогруппы вообще часто защищают превращением в более устойчивые – амидные. Взаимодействие ацилгалогенидов с нитридом лития дает N,N-диациламиды (триациламины).

Ацилирование аминов ангидридами.

По механизму и диапазону применимости реакция амино-де-ацилокси-замещения аналогична реакции описанной в предыдущем разделе и может быть проведена с участием аммиака, первичных или вторичных аминов.

О
днако при использовании аммиака и первичных аминов получаются также и имиды, в которых с атомом азота свяэаны две ацильные группы. Это происходит особенно легко в случае циклических ангидридов, из которых образуются циклические имиды:

Второй стадией этой реакции, которая намного медленне первой, является атака атома азота амидной группы на карбоновую кислоту.

Ацилирование аминов карбоновыми кислотами.

П
ри обработке карбоновых кислот аммиаком или аминами получаются соли. Соли, полученные из аммиака, а также первичных и вторичных аминов в результате пиролиза дают амиды, но этот метод менее удобен, чем реакции аминов с ангидридами, ацилгалогенидами и сложными эфирами, и редко используется в препаративных целях.

Хотя и взаимодействие кислот с аминами не приводит непосредственно к амидам, можно добиться чтобы эта реакция шла с хорошим выходом при комнатной или немного повышенной температуре.

К
ислоты можно превратить в амиды также нагреванием с амидами других карбоновых кислот (обмен), сульфоновых или фосфиновых кислот или действием трис(алкиламино)боранов [B(NHR’)>3>] или трис(диалкиламино)боранов [B(NR’>2>)>3>]:

Ацилирование аминов сложными эфирами.

Превращение сложных эфиров в амиды – полезный метод синтеза незамещенных, N-замещенных и N,N-дизамещенных амидов из соответствующих аминов.


Реакцию можно проводить с алкильными или ароматическими группами R и R’. Особенно хорошей уходящей группой является n-нитрофенильная. Эта реакция весьма ценна, так как многие сложные эфиры легкодоступны или сравнительно легко получаются даже в тех случаях, когда этого нельзя сказать о соответствующем ангидриде кислоты или ацилгалогениде. Как и по реакции с ацилгалогенидами, этим методом из сложных эфиров можно синтезировать гидразиды и гидроксамовые кислоты действием гидразина и гидроксиламина соответственно. И гидразин, и гидроксиламин взаимодействуют быстрее, чем аммиак или первичные амины. Вместо сложных эфиров часто используют фенилгидразиды, получаемые из фенилгидразина.

Остаётся добавить, что реакция образования гидроксамовых кислот. которые в присутсвии трёхвалентного железа дают окрашенные комплексы, часто используется как тест на сложные эфиры.

Ацилирование аминов амидами.

Э
то реакция обмена, и ее обычно проводят с солью амина. Уходящей группой служит, как правило, NH>2>, а не NHR или NR>2>; в качестве реагентов наиболее широко применяются первичные амины (в виде солей).


Для образования комплекса с уходящим аммиаком можно добавлять BF>3>. Эту реакцию часто применяют для получения замещенных производных мочевины из самой мочевины:

Диметилформамид можно превратить в другие формамиды продолжительным нагреванием с первичным или вторичным амином.

Реакции O-ацилирования.

Гидролиз ацилгалогенидов.

А
цилгалогениды очень реакционноспособны, поэтому гидролиз проходит легко. Большинство галогеноангидридов простых кислот следует хранить в безводных условиях, так как они реагируют с влагой воздуха. Поэтому обычно вода оказывается достаточно сильным нуклеофилом для проведения реакции гидролиза, хотя в отдельных случаях необходимо использовать гидроксид-ион.

Реакция, как правило, не имеет синтетической ценности, так как ацилгалогениды обычно получают из кислот. Реакционная способность ацилгалогенидов изменяется в следующем ряду: F<Cl<Br<I. При использовании в качестве нуклеофила карбоновой кислоты возможна реакция обмена.

Гидролиз галогеноангидридов обычно не катализируется кислотами, за исключением ацилфторидов, когда образование водородной связи может способствовать отщеплению фтора.

Гидролиз ангидридов.

Г
идролиз ангидридов протекает несколько труднее, чем гидролиз галогеноангидридов, но и в этом случае вода обычно оказывается достаточно сильным нуклеофилом.

Гидролиз ангидридов можно катализировать основаниями. Конечно, OH-группа атакует более энергично, чем вода, но и другие основания могут катализировать эту реакцию. Это явление, называется нуклеофильным катализом.

Гидролиз сложных эфиров.

Г
идролиз сложных эфиров обычно катализируется как кислотами, так и основаниями. Поскольку группа OR обладает более слабыми нуклеофугными свойствами, чем галогены или OCOR, вода не гидролизует большинство сложных эфиров.

При катализе основаниями, атакующей частицей служит более сильный нуклеофил – OH-группа. Эта реакция носит название омыления и приводит к соли кислоты. Кислоты катализируют реакцию за счет того, что положительный заряд атома углерода карбонильной группы становится больше, и, следовательно, он легче подвергается атаке нуклеофилом. Обе реакции обратимы, и поэтому практической ценностью обладают только тогда, когда равновесия удаётся каким либо образом сместить вправо. А поскольку образование соли – один из таких способов, гидролиз сложных эфиров в препаративных целях почти всегда проводят в щелочных растворах, за исключением тех случаев, когда вещество неустойчиво к действию оснований.

Гидролиз амидов.

Н
езамещенные амиды RCONH>2> способны гидролизоваться под действием как кислотных, так и основных катализаторов; при этом образуются соответствующая свободная кислота и ион аммония или соль кислоты и аммиак.

Аналогично можно гидролизовать N-замещенные (RCONHR’) и N,N-дизамещенные (RCONR’>2>) амиды, причем вместо аммиака получаются первичные и вторичные амины соответственно (или их соли). Вода является слишком слабым нуклеофилом для гидролиза большинства амидов, таккак группа NH>2> обладает еще более низкими нуклеофугными свойствами, чем группа OR. Даже в условиях кислотного или основного катализа часто требуется длительное нагревание.

Алкоголиз ацилгалогенидов.

Р
еакция ацилгалогенидов со спиртами – наилучший общий метод получения сложных эфиров. Реакция находит широкое применение и может быть проведена для субстратов, содержащих различные функциональные группы.

Для связывания образующегося НХ часто добавляют основания. В методе Шоттена-Баумана используется водный раствор щелочи, но часто применяется пиридин. Как R, так и R’ могут быть первичными, вторичными или третичными алкилами или арилами. В сложных случаях, особенно для стерически затрудненных кислот или третичных R’, вместо спирта можно брать алкоголят ион.

П
ри использовании в качестве ацилгалогенидов фосгена можно получить галоформные эфиры или карбонаты:

Важный пример – это синтез из фосгена и бензилового спирта карбобензоксихлорида (PhCH>2>OCOCl), который широко применяется для защиты аминогрупп в пептидном синтезе.

Алкоголиз ангидридов.

Д
иапазон применяемости этого метода такой же, как и реакции алкоголиза ацилгалогенидов. И хотя ангидриды немного менее реакционно способны, чем ацилгалогениды, их часто используют для получения сложных эфиров.


В качестве катализаторов применяют кислоты, кислоты Льюиса и основания, но наиболее часто – пиридин. Реакция циклических ангидридов приводит к моноэтерифицированным дикарбоновым кислотам, например:

Этерификация кислот.

Э
терификация кислот спиртами представляет собой реакцию, обратную реакции гидролиза сложных эфиров:

Ее можно осуществить только тогда, когда равновесие удается сместить вправо. Для этой цели имеется много способов, среди которых:

    прибавление одного из реагентов (обычно спирта) в избытке;

    удаление эфира или воды отгонкой;

    азеотропная отгонка воды;

    удаление воды, используя водоотнимающие средства или молекулярные сита.

Если R’ = метил, то наиболее общий способ смещения равновесия – это добавление избытка МеОН, а если R’ = этил, то предпочтительнее удалять воду азеотропной отгонкой. В качестве катализаторов чаще всего используются серная кислота и TsOН, хотя в случае некоторых активных кислот (например муравьиной или трифтороуксусной) катализатора не требуется. Группа R’ может быть не только метильной или этильной, но также и другой первичной или вторичной алкильной группой, однако третичные спирты обычно образуют карбокатионы и происходит элиминирование. для получения эфиров фенолов можно использовать сами фенолы, но выходы, как правило очень низкие. Этерификация катализируется кислотами (но не основаниями).

Д
ругим способом получения сложных эфиров из кислоты является обработка спиртом в присутствии дегидратирующих веществ, одним из которых является дициклогексилкарбодиимид, в ходе реакции превращающийся в дициклогексилмочевину:

Алкоголиз сложных эфиров. Переэтерификация.

П
ереэтерификация катализируется кислотами или основаниями. Это обратимая реакция и равновесие необходимо смещать в желаемую сторону.

Во многих случаях низкокипящие эфиры можно превратить в более высококипящие путем отгонки низкокипящего спирта по мере его образования. Эта реакция была использована как метод ацилирования первичных ОН-групп в присутствии вторичных ОН- групп.

Ацилирование карбоновых кислот ацилгалогенидами.

Н
есимметричные, а также и симметричные ангидриды часто получают обработкой ацилгалогенидов с солью кислоты.

Катионами в этой соли служат Na+,K+ и Ag+, но чаще пиридин или другой третичный амин прибавляют к кислоте и полученную таким образом соль обрабатывают ацилгалогенидом. Соли таллия особенно эффективны и взаимодействуют с ацилгалогенидами, давая ангидриды с высокими выходами. Симметричные ангидриды синтезируют по реакции ацилгалогенида с водным раствором NaOH в условиях межфазного катализа.

Ацилирование карбоновых кислот кислотами.

И
з двух молекул обычной кислоты ангидрид образуется только в присутствии дегидратирующего агента, смещающего равновесие в этой реакции вправо.


Наиболее распространенными дегидратирующими агентами являются уксусный и трифтороуксусный ангидриды, дициклогексилкарбодиимид, метоксиацетилен и P>2>O>5>. Этот метод дает плохие результаты при получении смешанных ангидридов, которые во всех случаях обычно диспропорционируют на два простых ангидрида при нагревании. Однако простое нагревание дикарбоновых кислот приводит к циклическим ангидридам при условии, что в образующемся цикле содержатся пять, шесть или семь атомов. Малоновая кислота и ее производные, которые должны давать четырехчленные циклические ангидриды, не вступают в эту реакцию при нагревании, а декарбоксилируются:

Список литературы.

1)”Органическая химия” Джерри Марч; Москва “Мир” 1987;

2)”Механизмы реакций в органической химии” Питер Сайкс;

“Химия” 1971;

3)”Органическая химия” Ю.С.Шабаров; “Химия” 1994;

4)”Основы органической химии” Франк Л. Вайзман; “Химия” 1995.

Оглавление

Введение. 1

Реакции C-ацилирования. 1

Реакции сочетания ацилгалогенидов. 2

Реакции ацилирования кетонов ангидридами. 2

Реакции ацилирования сложных эфиров сложными эфирами. Конденсации Кляйзена и Дикмана. 3

Реакция ацилирования Фриделя-Крафтса. 4

Реакции N-ацилирования. 5

Ацилирование аминов ацилгалогенидами. 5

Ацилирование аминов ангидридами. 6

Ацилирование аминов карбоновыми кислотами. 6

Ацилирование аминов сложными эфирами. 6

Ацилирование аминов амидами. 7

Реакции O-ацилирования. 7

Гидролиз ацилгалогенидов. 7

Гидролиз ангидридов. 8

Гидролиз сложных эфиров. 8

Гидролиз амидов. 8

Алкоголиз ацилгалогенидов. 9

Алкоголиз ангидридов. 9

Этерификация кислот. 10

Алкоголиз сложных эфиров. Переэтерификация. 10

Ацилирование карбоновых кислот ацилгалогенидами. 10

Ацилирование карбоновых кислот кислотами. 11

Список литературы. 11