Газовая хроматография (работа 1)

Министерство общего образования РФ

Воронежский государственный университет

Реферат

"Газовая хроматография"

Выполнил: студент 3 курса 4 группы

Юденко Валерий

Преподаватель: Бондарев Ю.М.

Воронеж-2000

Содержание:

Сущность хроматографического метода 3

Классификация методов хроматографии 4

Газоадсорбционная хроматография 8

Газожидкостная хроматография 9

Аппаратурное оформление процесса 11

Области применения газовой хроматографии 13

Литература 16

Сущность хроматографического метода

С необходимостью разделения смеси веществ на составляющие ее компоненты приходится сталкиваться как химику-синтетику, хими­ку-аналитику, так и технологу, геологу, физику, биологу и многим другим специалистам. Особое значение разделение смеси веществ приобрело в последние десятилетия в связи с проблемой получения сверхчистых веществ.

Разделение смеси не вызывает особых трудностей, если ее ком­поненты находятся в различных фазах. Оно существенно ослож­няется, если компоненты смеси образуют одну фазу. В этом случае приходится изменять агрегатное состояние отдельных компонентов (например, добиться их выпадения в осадок), либо применять хими­ческие или физические методы разделения. В основе последних ле­жат кинетические явления или фазовые равновесия.

Такие широко известные методы разделения, как дистилляция, кристаллизация, экстракция и адсорбция основаны на изменении фазовых равновесии. В этих процессах молекулы веществ, образую­щих смесь, переходят через границу раздела, стремясь к такому распределению между фазами, при котором в каждой из них уста­навливается постоянная равновесная концентрация.

Если свойства компонентов исследуемой смеси близки, то до­статочная степень разделения достигается лишь многократным по­вторением элементарного акта разделения. Такой процесс, напри­мер, осуществляется в насадочных или тарельчатых ректификаци­онных колоннах. Следует отметить, что в таких случаях полное раз­деление возможно только для простых (не более чем трехкомпонентных) систем.

Более полного разделения можно достичь, если на эффект, вызываемый многократным установлением фазовых равновесий, на­ложить действие кинетического фактора. В тех случаях, когда ис­пользуются кинетические явления (например, при молекулярной дистилляции), через поверхность раздела фаз и лишь в одном на­правлении переносятся молекулы только одного вещества. Если разделение смеси производить в таких системах, в которых одна из фаз (подвижная) перемещается относительно другой (неподвиж­ной), то улавливание и удаление молекул, покидающих поверхность раздела фаз, осуществляется благодаря постоянному перемещению подвижной фазы. Как и при фазовом равновесии, молекулы, выхо­дящие из подвижной фазы, возвращаются в нее, попадая, однако, не в прежний элемент ее объема, а в новый.

Если в процессе разделения фазовые переходы повторять мно­гократно, то можно получить высокую эффективность разделения. Так как фазовые переходы связаны с поверхностью раздела, под­вижная и неподвижная фазы должны обладать большой поверх­ностью соприкосновения. Кроме того, вследствие наличия диффу­зионных процессов, снижающих эффективность разделения, обе фазы должны иметь относительно небольшую толщину взаимодей­ствующего слоя.

В какой-то степени эти требования выполняются в методе раз­деления смеси веществ, получившем название хроматографического. Впервые хроматографическое разделение сложной смеси (хлоро­филла) было осуществлено М. С. Цветом в 1903 г.

Если в качестве неподвижной фазы взять мелкоизмельченный сорбент и наполнить им трубку (стеклянную или металлическую), а движение подвижной фазы (жидкости или газа) осуществлять за счет перепада давления на концах этой трубки, то последняя будет представлять собой хроматографическую колонку, называемую так по аналогии с ректификационной колонкой для дистилляционного разделения. Разделяемая смесь веществ вместе с потоком подвиж­ной фазы поступает в хроматографическую колонку. При контакте с поверхностью неподвижной фазы каждый из компонентов разде­ляемой смеси распределяется между подвижной и неподвижной фазами в соответствии с его свойствами, например адсорбируемостью или растворимостью. Вследствие непрерывного движения под­вижной фазы лишь часть распределяющегося компонента успевает вступить во взаимодействие с неподвижной фазой. Другая же его часть продвигается дальше в направлении потока и вступает во взаимодействие с другим участком поверхности неподвижной фазы. Поэтому распределение вещества между подвижной и неподвижной фазами происходит на небольшом слое неподвижной фазы только при достаточно медленном движении подвижной фазы. Поглощен­ные неподвижной фазой компоненты смеси не участвуют в переме­щении подвижной фазы до тех пор, пока они не десорбируются и не будут снова перенесены в подвижную фазу. Поэтому каждому из них для прохождения всего слоя неподвижной фазы в колонке по­требуется большее время, чем для молекул подвижной фазы. Если молекулы разных компонентов разделяемой смеси обладают раз­личной степенью сродства к неподвижной фазе (различной адсорбируемостью или растворимостью), то время пребывания их в этой фазе, а следовательно, и средняя скорость передвижения по колон­ке различны. При достаточной длине колонки это различие может привести к полному разделению смеси на составляющие ее компо­ненты.

Применение хроматографического метода не ог­раничивается лишь разделением и анализом смеси веществ. В по­следнее время хроматография широко используется и как метод, научного исследования, например, для исследования свойств слож­ных систем, в частности растворов.

Итак, хроматографией следует называть процесс, основанный на перемещении дискретной зоны вещества вдоль слоя сорбента в потоке подвижной фазы и связанный с многократным повторением сорбционных и десорбционных актов. Хроматографический процесс осуществляется при сорбционном распределении вещества между двумя фазами, одна из которых перемещается относительно другой.

Состав смеси, покидающей хроматографическую колонку, непрерывно изменяется. В то время как в таких процессах, как экстракция или ректификация, можно отбирать в течение всего процесса непрерывно одну и ту же фракцию, или одно и то же вещество, в хроматографическом процессе, за исключением специальных случаев, когда имеет место движение слоя сорбента, этого делать нельзя.

Термин «хроматография» относится как к самому процессу, так и к научной дисциплине, его изучающей, использующей и разраба­тывающей аппаратурное оформление.

Классификация методов хроматографии

Многообразие вариантов хроматографического метода, возникшее в связи с широким его развитием, вызывает необходимость их клас­сификации. К основным признакам классификации относятся:

1) агрегатное состояние фаз;

2) природа элементарного акта;

3) способ относительного перемещения фаз;

4) способ аппаратурного оформления процесса;

5) цель осуществления процесса.

1) Классификация по агрегатному состоянию фаз относится к хроматографии в целом. Газовой хроматографией называется хроматографический метод, в котором в качестве подвижной фазы применяется газ или пар. В свою очередь газовая хроматография может быть разделена на газо-адсорбционную (газо-твердую) и газо-жидкостную. В пер­вом случае неподвижной фазой служит твердое вещество — адсор­бент, во втором — жидкость, распределенная тонким слоем по по­верхности какого-либо твердого носителя (зерненого материала, стенок колонки).

2) Классификация на основе природы элемен­тарного акта. Если неподвижной фазой является жидкость, то элементарным актом, как правило, является акт растворения. В этом случае анализируемое вещество растворяется в жидкой не­подвижной фазе и рас­пределяется между неподвижной, и подвиж­ной фазами. Это распределительная хро­мато­графия. Газо-жидкостная хроматография—один из вариантов распределительной хроматографии.

Если неподвижной фазой служит твердое вещество—адсор­бент, то элементарным актом является процесс адсорбции вещества. Следовательно, газо-твердая хроматогра­фия является адсорбци­онной хроматографией. Следует, однако, иметь в виду, что в га­зо-­жидкостной хроматографии определенную роль может играть ад­сорбция на межфаз­ных границах (газ - жидкость и жидкость - твердый носитель) и в газо-адсорбцион­ной—процесс раство­рения.

3) По способам перемещения фаз различают три ме­тода: проявительная, или элюентная, фронтальная и вытеснительная хроматография.





Рис.1 Схема образования зон в проявите-

льном методе и распределения концент-

рации в зонах

Рис.2 Типичная выходная кривая проявитель-

ного метода

Проявительная хроматография. Заполненную сорбентом колон­ку промывают чис­тым газом Е, обычно сорбирующимся слабее всех остальных компонентов смеси. За­тем, не прекращая потока газа Е, в колонку вводят порцию анализируемой смеси, на­пример, вещества А и В, которые сорбируются в верхних слоях сорбента (рис. 1, а) и вследствие движения газа постепенно перемещаются вдоль слоя сорбента с различ­ными для каждого компонента скоростями. В ре­зультате зона лучше сорбирующегося вещества, например В, по­стоянно отстает от зоны хуже сорбирующегося вещества А (рис. 1, б, в) и при достаточной длине колонки смесь веществ А и В раз­деляется (рис. 1,г). Изменение концентрации вымываемых веществ по выходе из колонки может быть зафиксировано в виде непрерыв­ной кривой, называемой хроматограммой (рис. 1, д).

Целесообразно рассмотреть хроматограмму для одного компонента более подробно (рис. 2). Обычно по оси абсцисс откладыва­ется объем проходящего через колонку газа, называемого газом-носителем. В случае постоянства скорости газа-носителя по оси абсцисс можно откладывать пропорциональное объему газа время опыта, а по оси ординат—изменение концентрации хроматографического компонента по выходе его из колонки. Точка О соответ­ствует моменту ввода пробы анализируемого вещества, точка О'появлению на выходе из колонки несорбирующегося газа. Таким образом, отрезок 00' соответствует объему колонки, заполненному несорбирующимся газом (V>0>). Линия ОВ, проходящая параллельно оси абсцисс, называется нулевой линией. Кривая АНВ называется хроматографическим пиком данного компонента, а расстояние от нулевой линии до максимума пика H, т. е. GH,высота пика (h).

Отрезок А'В' называется шириной пика у основа­ния (). Он определяется расстоя­нием между точ­ками пересечения каса­тельных, проведенных к точкам перегиба С и D, с нулевой линией. Расстоя­ние между точками EFширина на половине вы­соты пика (>0,5>), а рас­стояние между точками С и Dширина пика в точках перегиба >п>.

Отрезок OG соответст­вует удерживаемому объ­ему V>r>, т. е. объему газа-носителя, который следу­ет пропустить через слой сорбента в колонке от момента ввода пробы до момента регистрации на выходе из колон­ки максимальной концентрации вымываемого вещества.

Время >r>, соответствующее удерживаемому объему V>r>, назы­вается временем удер­живания.

Проявительный метод—наиболее распространенный метод га­зовой хроматографии. Существенным его до­стоинством является возможность практически полного разделе­ния на составляющие компоненты. Недостаток метода состоит в том, что вследствие разбавления компонентов смеси газом-носителем значительно уменьшается концентра­ция веществ после вымывания их из колонки. Однако это компенсируется примене­нием высокочув­ствительных детекторов.

Фронтальный метод состоит в непрерывном пропускании ана­лизируемой смеси через слой сорбента в колонке. Если анализируе­мая смесь состоит из двух компонен­тов А и В, изотерма сорбции которых линейная, и наиболее слабо сорбирующегося газа Е, то по­следний заполняет весь объем колонки и покидает ее в чистом виде. При этом на хроматограмме фиксируется горизонтальная линия (нулевая линия) (рис. 3). Если компонент А сорбируется слабее чем компонент В, то после насыщения сорбента веществом А из колонки начинает выходить смесь этого вещества с газом Е. На хрома­тограмме появляется ступень, высота которой соответствует концентрации А в Е на выходе из колонки. Эта концентрация мо­жет быть равна или больше исходной концен­трации А. Наконец, когда сорбент насыщается также и веществом В, из колонки начи­нает выходить смесь газа, содержащая все исходные компоненты, а на хроматограмме появляется вторая ступень, высота которой соответствует суммарной исходной кон­центрации веществ А и В.


Рис.3 Схема образования зон в фронтальном

методе и распределения концентрации в зонах

В случае более сложной смеси исходная концен­трация всех компонентов достига­ется после насы­щения сорбента всеми ее компонентами. Таким об­разом, число ступе­ней на хроматограмме фронталь­ного анализа равно числу сорбирующихся компо­нен­тов смеси.

В отличие от проявительного фронтальный метод позволяет выде­лить из смеси в чистом виде только одно, наибо­лее слабо сорбирующееся вещество. Поэтому для ана­литических и тем бо­лее препаративных целей фронтальный метод применяется лишь в особых случаях. Фрон­тальный метод используется также для определения физико-хи­ми­ческих характеристик вещества, в частности, для определения изо­терм сорбции.

В вытеснительном методе десорбция компонентов смеси осу­ществляется потоком сильно сорбирующегося вещества - вытеснителя. При работе по этому методу запол­ненную сорбентом колонку предварительно промывают несорбирующимся веществом, а затем вводят порцию анализируемой смеси. Продвижение компонентов смеси и их вымывание из колонки происходит под действием пото­ка вытеснителя. Компоненты анализируемой смеси перемещаются впереди фронта вытеснителя и разделяются на зоны в соответствии с их сорбционным сродством.

Хроматограмма вытеснительного анализа приведена на рис. 4. В отличие от фрон­тального метода каждая ступень хроматограммы, полученной вытеснительным мето­дом, соответствует содержанию одного компонента.


Рис.4 Схема образования зон в вытеснительном

методе и распределения концентрации в зонах

В отличие от проявительного, в вытеснительном методе компоненты смеси не раз­бавляются промывающим веществом, вследствие чего их концентрация не только не умень­шается, но даже увеличивается.

В чистом виде вытеснительный метод в газовой хроматографии применяется срав­нительно редко, главным образом при определе­нии микропримесей.

4) По аппаратурному оформлению газовая хроматография может быть отнесена лишь к колоночному варианту. Ко­лонки могут быть насадочными и полыми. В первом случае колон­ка заполняется зерненым сорбентом, во втором - сорбент нано­сится на внутренние стенки капилляра, являющегося хроматографической колонкой. Последний метод получил название капилляр­ной хроматографии.

5) Целью проведения хроматографического процесса может быть качественный и количественный анализ смеси, препаративное выделение веществ, а также определение физико-химических характеристик. Возможность анализа малых количеств вещества и малых его концентраций обусловливает при­менение метода в биологии, медицине, фи­зической химии, геохи­мии, космохимии, криминалистике и т. д.

Сочетание хроматографического метода разделения и анализа смеси веществ с другими современными методами изучения их свойств, такими, как, например, масс-спектро­метрия, ИК-спектрометрия, ЯМР- и ЭПР-спектроскопия, делает этот метод исключи­тельно важным и практически универсальным средством иссле­дования.

В аналитической реакционной хроматографии сочетаются раз­личные химические про­цессы с хроматографическим разделением и анализом смеси веществ в едином ап­пара­турном комплексе. Этот метод обладает специфическими особенностями, отли­чаю­щими его от аналитической и препаративной хроматографии, и поэтому он рас­сматри­вается как один из самостоятельных вариантов газовой хроматографии.

Цель препаративной хроматографии выделение отдельных компонентов смеси в чистом виде. Понятно, что в этом случае пер­востепенное значение приобретает произ­водительность хроматографической колонки, которая в аналитическом варианте суще­ствен­ной роли не играет. Требование высокой производительности об­условливает ряд существенных особенностей процесса, отличаю­щих препаративную хроматографию от аналитической. Поэтому препаративная хроматография должна рассматриваться как осо­бый тип газовой хроматографии.

Газовая хроматография может служить для исследования свойств систем, а также кинетики химических процессов. В таком случае говорят о неаналитической газовой хроматографии. Однако для решения неаналитических задач применяют как обычный ана­литический вариант, так и аналитическую реакционную хромато­графию.

Газоадсорбционная хроматография

Особенность метода газоадсорбционной хроматографии (ГАХ) в том, что в качестве неподвижной фазы применяют адсорбенты с высо­кой удельной поверхностью (10—1000 м2г-1), и распределение веществ между неподвижной и подвижной фазами определяется процессом адсорбции. Адсорбция молекул из газовой фазы, т.е. концентрирова­нно их на поверхности раздела твердой и газообразной фаз, происхо­дит за счет межмолекулярных взаимодействий (дисперсионных, ориентационных, индукционных), имеющих электростатическую природу. Возможно, образование водородной связи, причем вклад этого вида взаимодействия в удерживаемые объемы значительно уменьшается с ростом температуры. Комплексообразование для селективного разде­ления веществ в ГХ используют редко.

Для аналитической практики важно, чтобы при постоянной температуре количество адсорбированного вещества на поверхности С>s> было пропорционально концентрации этого вещества в газовой фазе С>m>:

C>s> = кc>m>,,

т.е. чтобы распределение происходило в соответствии с линейной изотермой адсорб­ции константа). В этом случае каждый компонент перемещается вдоль колонки с постоянной скоростью, не завися­щей от его концентрации. Разделение веществ обу­словлено различной скоростью их перемещения. Поэтому в ГАХ чрезвычайно важен выбор адсорбента, площадь и природа поверхности которого обусловливают селектив­ность (разделение) при заданной температуре.

С повышением температуры уменьшаются теплота адсорбции H/T, от которой зависит удерживание, и соответственно t>R> . Это используют в практике анализа. Если разделяют соединения, сильно различающиеся по летучести при постоянной температуре, то низкокипящие веще­ства элюируются быстро, высококипящие имеют большее время удерживания, их пики на хромато­грамме будут ниже и шире, анализ занимает много времени. Если же в процессе хроматографирования повышать температуру колонки с постоянной скоростью (программирование температуры), то близкие по ширине пики на хроматограмме будут располагаться равномерно.

В качестве адсорбентов для ГАХ в основном используют активные угли, силикагели, пористое стекло, оксид алюминия. Неоднородностью по­верхности активных адсорбентов обусловлены основные недос­татки метода ГАХ и невозмож­ность определения сильно адсорбирующихся полярных молекул. Однако на геометрически и химически однородных макропористых адсорбен­тах можно проводить анализ смесей сильнопо­лярных веществ. В последние годы выпускают адсорбенты с более или менее однородной по­верхностью, такие, как пористые полимеры, макропористые силикагели (силохром, порасил, сферосил), пористые стекла, цеолиты.

Наиболее широко метод газоадсорбционной хроматографии применяют для анализа смесей газов и низкокипящих углеводородов, не содержащих активных функциональных групп. Изотермы адсорбции таких молекул близки к линейным. Например, для разделения О>2>, N>2>, CO, CH>4>, СО>2> с успехом применяют глинистые. Температура колонки программируется для сокращения времени анализа за счет уменьшения t>R> высококипящих газов. На молекуляр­ных ситах — высокопористых природных или синтетических кристал­лических материалах, все поры которых имеют примерно одинаковые размеры (0,4—1,5 нм), — можно разделить изотопы водорода. Сорбен­ты, называемые порапаками, используют для разделения гидридов металлов (Ge, As, Sn, Sb) (см. рис. 8.15). Метод ГАХ на колонках с пористыми полимерными сорбентами или углеродными молекулярны­ми ситами самый быстрый и удобный способ определения воды в неорганических и органических материалах, например в растворите­лях.

Газожидкостная хроматография

В аналитической практике чаще используют метод газожидкостной хроматографии (ГЖХ). Это связано с чрезвычайным разнообразием жидких неподвижных фаз, что об­легчает выбор селективной для дан­ного анализа фазы, с линейностью изотермы рас­пределения в более широкой области концентраций, что позволяет работать с боль­шими пробами, и с легкостью получения воспроизводимых по эффективнос­ти колонок.

Механизм распределения компонентов между носителем и непод­вижной жидкой фа­зой основан на растворении их в жидкой фазе. Селективность зависит от двух факто­ров: упругости пара определяемо­го вещества и его коэффициента активности в жидкой фазе. По закону Рауля, при растворении упругость пара вещества над раствором p>i> прямо пропорциональна его коэффициенту активности  молярной доле N>i> в растворе и давлению паров чистого вещества Р°>i> при данной температуре:

p>i> = N>i> Р°>i>

Поскольку концентрация i-го компонента в равновесной паровой фазе определяется его парциальным давлением, можно принять что

P>i> ~ c>m>, а N>i> ~ c>s>. Тогда

а коэффициент селективности

Таким образом, чем ниже температура кипения вещества (чем боль­ше P0>i>), тем слабее удерживается оно в хроматографической колонке.

Если же температуры кипения веществ одинаковы, то для их разделе­ния используют различия во взаи­модействии с неподвижной жидкой фазой: чем сильнее взаимодействие, тем меньше коэффициент актив­ности и больше удерживание.

Неподвижные жидкие фазы. Для обеспечения селективности колон­ки важно правильно выбрать не­подвижную жидкую фазу. Эта фаза должна быть хорошим растворителем для компонентов смеси (если растворимость мала, компоненты выходят из колонки очень быстро), нелетучей (чтобы не испарялась при рабочей температуре колонки), химически инертной, должна обладать небольшой вязкостью (иначе замедляется процесс диффузии) и при нанесении на носитель образо­вывать равномерную пленку, прочно с ним связанную. Разделительная способность неподвижной фазы для компонентов данной пробы дол­жна быть максимальной.

Различают жидкие фазы трех типов: неполярные (насыщенные углеводороды и др.), умеренно полярные (сложные эфиры, нитрилы и др.) и полярные (полигликоли, гидроксиламииы и др.).

Зная свойства неподвижной жидкой фазы и природу разделяемых веществ, например класс, строение, можно достаточно быстро подоб­рать подходящую для разделения данной смеси селективную жидкую фазу. При этом следует учитывать, что время удерживания компонен­тов будет приемлемым для анализа, если полярности стационарной фазы и вещества анализируемой пробы близки. Для растворенных ве­ществ с близкой полярностью порядок элюирования обычно корре­лирует с температурами кипения, и если разница температур доста­точно велика, возможно полное разделение. Для разделения близко - кипя­щих веществ разной полярности используют стационарную фазу, селективно - удерживающую один или несколько компонентов вследст­вие диполь - дипольного взаимодействия. С увеличением полярности жидкой фазы время удерживания полярных соединений возрастает.

Для равномерного нанесения жидкой фазы на твердый носитель ее смешивают с легколетучим раствори­телем, например эфиром. К этому раствору добавляют твердый носитель. Смесь нагревают, растворитель испаряется, жидкая фаза остается на носи­теле. Сухим носителем с нанесенной таким образом неподвижной жидкой фазой запол­няют колонку, стараясь избежать образования пустот. Для равномерной упаковки через колонку пропускают струю газа и одновременно пос­тукивают по колонке для уплотне­ния набивки. Затем до присоедине­ния к детектору колонку нагревают до температуры на 50° С выше той, при которой ее предполагается использовать. При этом могут быть потери жидкой фазы, но колонка входит в стабильный рабочий ре­жим.

Носители неподвижных жидких фаз. Твердые носители для диспергирования неподвижной жидкой фазы в виде однородной тонкой пленки должны быть механически прочными с умеренной удельной поверхностью (20м2/г), небольшим и одинаковым размером частиц, а также быть достаточно инертными, чтобы адсорбция на поверхности раздела твердой и газообразной фаз была минимальной. Самая низкая адсорбция наблюдается на носителях из силанизированного хромосорба, стеклянных гранул и флуоропака (фторуглеродный полимер). Кроме того, твердые носители не должны реагировать на повышение температуры и должны легко смачиваться жидкой фазой. В газовой хроматографии хелатов в качестве твердого носителя чаще всего используют силанизированные белые диатомитовые носители — диатомитовый кремнезем, или кизельгур. Диатомит — это микроаморф­ный, содержащий воду, диоксид кремния. К таким носителям относят хромосорб W, газохром Q, хроматон N и др. Кроме того, используют стеклянные шарики и тефлон.

Химически связанные фазы. Часто используют модифицированные носители, ковалентно - связанные с жидкой фазой. При этом стационар­ная жидкая фаза более прочно удерживается на поверхности даже при самых высоких температурах колонки. Например, диатомитовый носи­тель обрабатывают хлорсиланом с длинноцепочечным заместителем, обладающим определенной полярностью. Химически связанная непод­вижная фаза более эффективна.

Аппаратурное оформление процесса

Газовая хроматография—наиболее разработанный в аппаратур­ном оформлении хроматографический метод. Прибор для газохроматографического разделения и полу­чения хроматограммы назы­вается газовым хроматографом. Схема установки наиболее простого газового хроматографа приведена на рис. 5. Она состоит из газового баллона, содержащего подвижную инертную фазу (газ-носитель), чаще всего гелий, азот, аргон и др. С помощью редуктора, уменьшающего давление газа до необходимого, газ-носи­тель поступает в колонку, представляющую собой трубку, заполненную сорбентом или другим хроматографическим материалом, играющим роль неподвижной фазы.

Рис.5 Схема работы газового хроматографа:

1 – баллон высокого давления с газом-носителем; 2 – стабилизатор потока; 3 и 3 ' – манометры; 4 – хроматографическая колонка; 5 – устройство для ввода пробы; 6 – термостат; 7 – детектор; 8 – самописец; 9 – расходомер

Газ-носитель подается из баллона под определенным постоянным давлением, кото­рое устанавливается при помощи специальных кла­панов. Скорость потока в зависимо­сти от размера колонки, как прави­ло, составляет 20—50 мл •мин'1. Пробу перед вводом в колонку дозиру­ют, Жидкие пробы вводят специальными инжекционными шприцами (0,5—20 мкл) в поток газа-носителя (в испаритель) через мембрану из силиконовой са­моуплотняющейся резины. Для введения твердых проб используют специальные при­способления. Проба должна испаряться практически мгновенно, иначе пики на хрома­тограмме расширяются и точность анализа снижается. Поэтому дозирующее устрой­ство хрома­тографа снабжено нагревателем, что позволяет поддерживать темпера­туру дозатора примерно на 50°С выше, чем температура колонки.

Применяют разделительные колонки двух типов: в ~80% случаев спиральные, или насадочные (набивные), а также капиллярные. Спи­ральные колонки диаметром 2—6 мм и длиной 0,5—20 м изготавливают из боросиликатного стекла, тефлона или ме­талла. В колонки поме­щают стационарную фазу: в газоадсорбционной хроматографии это адсорбент, а в газожидкостной хроматографии — носитель с тонким слоем жидкой фазы. Правильно подготовленную колонку можно использовать для нескольких сотен опре­делений. Капиллярные колонки разделя­ют по способу фиксации неподвижной фазы на два типа: колонки с тонкой пленкой неподвижной жидкой фазы (0,01—1 мкм) непосредственно на внут­ренней поверхности капилляров и тонкослойные колонки, на внутреннюю повер­хность которых нанесен пористый слой (5—10 мкм) твердого веще­ства, выпол­няющего функцию сорбента или носите­ля неподвижной жидкой фазы. Ка­пиллярные колонки изготавливают из различных материалов - нержавеющей стали, меди, дедерона, стекла; диаметр капилляров 0,2—0,5 мм, длина от 10 до 100 м.

Температура колонок определяется главным образом летучестью пробы и может изме­няться в пределах от - 1960С (температура кипения жидкого азота) до 3500 С. Темпера­туру колонки контролируют с точ­ностью до нескольких десятых градуса и поддержи­вают постоянной с помощью термостата. Прибор дает возможность в процессе хрома­тографирования повышать температуру с постоянной скоростью (линей­ное програм­мирование температуры).

Для непрерывного измерения концентрации разделяемых веществ в газе-носителе в комплекс газового хроматографа входит несколько различных детекторов.

Детектор по теплопроводности (катарометр). Универсальный детек­тор наиболее широко используется в ГХ. В полость металлического блока помещена спираль из металла с высоким термическим сопротив­лением (Pt, W, их сплавы, Ni) (рис. 6).

Ч

Рис.6 Схема катарометра: 1 - ввод газа из колонки; 2 - изолятор; 3 - выход в атмосферу; 4 - металлический блок; 5 - нить сопротивления

ерез спираль проходит постоянный ток, в результате чего она нагревается. Если спираль обмывает чистый газ-носитель, спираль теряет постоянное количество теплоты и ее температура постоянна. Если состав газа-носителя содер­жит примеси, то меняется теплопроводность газа и

соответственно температура спирали. Это приводит к из­менению сопротивления нити, которое измеряют с помо­щью моста Уитстона (рис. 7). Сравнитель­ный поток газа-носителя омывает нити ячеек R>1> и R>2> а газ, поступа­ющий из/колонки, омывает нити измерительных ячеек С>1> и С>2>. Если у четырех нитей одинаковая температура (одинаковое сопротивление), мост нахо­дится в равновесии. При изменении состава газа, выходящего из колонки, сопротивле­ние нитей ячеек С>1> и С>2> меняется, равновесие нарушается и генерируется выходной сигнал.

Н

Рис. 7. Схема моста Уитстона:

1 - вход газа из колонки; 2 - ввод чистого газа-носите­ля; 3 - источник тока; 4 - регулятор тока, проходящего через нити; 5 - миллиамперметр; 6 - установка нуля


а чувствительность катарометра сильно влияет теплопроводность газа-носителя, поэтому нужно использовать газы-носители с максимально возможной теплопроводностью, например гелий или водород.

Детектор электронного захвата представляет собой ячейку с двумя электродами (ионизационная камера), в которую поступает газ-носитель, прошедший через хроматографическую колон­ку (рис. 8). В камере он облучается постоянным потоком -элек­тронов, поскольку один из электродов изготовлен из материала, яв­ляющегося источником излучения (63Ni, 3Н, 2

Рис.8 Схема электронно-захватного детектора: 1 - ввод газа; 2 - источник излучения; 3 - вывод в атмосферу; 4,5 - электроды


26Ra). Наиболее удобный источник излучения — титановая фольга, содержащая адсорбированный тритий. В детекторе происходит реакция свободных элект­ронов с молекулами оп­ределенных типов с образованием стабильных анионов: АВ + е = АВ- ± энергия, АВ+е=А + В- ± энергия. В ионизо­ванном газе-носителе (N>2>, Не) в качестве отрицательно заря­женных частиц присутствуют только электроны. В присутст­вии соединения, которое может захватывать электроны, иони­зационный ток детектора уменьшается. Этот детектор дает от­клик на соединения, содержащие галогены, фосфор, серу, нит­раты, свинец, кислород; на большинство углеводородов он не реагирует.

Пламенно - ионизационный детектор (ПИД). Схема ПИД приведена на рис. 9. Выходящий из колонки газ сме­шивается с водородом и поступает в форсунку горелки детектора.

О

Рис. 9 Схема ПИД: 1 - ввод газа на колонки; 2 - ввод водорода; 3 - вывод в атмосферу; 4 - собирающий электрод; 5 - катод; 6 - ввод воздуха


бразующиеся в пламени ионизованные частицы заполняют межэлек­тродное пространство, в результате чего сопротивление снижается, ток резко усиливается. Стабильность и чувствительность ПИД зависит от подходящего выбора скорости потока всех используемых газов (газ-носитель ~30—50 мл/мин, H>2> ~30 мл/мин, воздух ~300—500 мл/мин). ПИД реагирует практически на все соединения, кроме Н>2>, инертных газов, О>2>, N>2>, оксидов азота, серы, углерода, а также воды. Этот детек­тор имеет широкую область линейного отклика (6—7 порядков), поэто­му он наиболее пригоден при определении следов.

Области применения газовой хроматографии

Метод ГХ — один из самых современных методов многокомпонент­ного анализа, его отличительные черты — экспрессность, высокая точность, чувствительность, автома­тизация. Метод позволяет решить многие аналитические проблемы. Количественный ГХ анализ можно рассматривать как самостоятельный аналитический метод, более эф­фективный при разделении веществ, относящихся к одному и тому же классу (углево­дороды, органические кислоты, спирты и т.д.). Этот метод незаменим в нефтехимии (бензины содержат сотни соединений, а керосины и масла — тысячи), его используют при определении пес­тицидов, удобрений, лекарственных препаратов, витаминов, нар­коти­ков и др. При анализе сложных многокомпонентных смесей успешно применяют метод капиллярной хроматографии, поскольку число тео­ретических тарелок для 100 м колонки достигает (2—3)*105.

Возможности метода ГХ существенно расширяются при использова­нии реакционной газовой хроматографии (РГХ), вследствие того что многие нелетучие, термонеустойчи­вые или агрессивные вещества непос­редственно перед введением в хроматографиче­скую колонку могут быть переведены с помощью химических реакций в другие — бо­лее летучие и устойчивые. Химические превращения осуществляют чаще на входе в хроматографическую колонку, иногда в самой колонке или на выходе из нее перед де­тектором. Значительно удобнее проводить превращения вне хроматографа. Недостатки метода РГХ связаны с появлением новых источников ошибок и возрастанием времени анали­за.

Реакционную хроматографию часто используют при определении содержа­ния микро­количеств воды. Вода реагирует с гидридами металлов, с карбидом кальция или метал­лическим натрием и др., продукты реакции (водород, аце­тилен) детектируются с высо­кой чувствительностью пламенно-ионизационным детектором. К парам воды этот де­тектор малочувствителен. Широко применяют химические превращения в анализе тер­мически неустойчивых биологических смесей. Обычно анализируют производные ами­нокислот, жирных кислот С>10>—C>20>, сахаров, стероидов. Для изучения высокомолеку­лярных соединений (олигомеры, полимеры, каучуки. смолы и т.д.) по продуктам их разложения используют пиролизную хроматографию. В этом методе испарение пробы заменяют пиролизом. Карбонаты металлов можно проанализировать по выде­ляюще­муся диоксиду углерода при обработке их кислотами.

Методом газовой хроматографии можно определять металлы, пере­водя их в летучие хелаты. Особенно пригодны для хроматографирования хелаты 2-, 3- и 4-валентных ме­таллов с -дикетонами. Лучшие хроматографические свойства проявляют -дикето­наты Be(II), Al(III), Sc(III), V(III), Cr(III). Газовая хроматография хелатов может конку­рировать с другими инструментальными методами анализа.

ГХ используют также в препаративных целях для очистки хими­ческих препаратов, вы­деления индивидуальных веществ из смесей. Метод широко применяют в физико-хи­мических исследованиях: для определения свойств адсорбентов, термодинамических характеристик адсорбции и теплот адсорбции, величин поверхности твердых тел, а также констант равновесия, коэффициентов активности и др.

При помощи газового хроматографа, установленного на космичес­кой станции "Венера-12", был определен состав атмосферы Венеры. Газовые хроматографы устанавливают в жилых отсеках космических кораблей: организм человека выделяет много вредных ве­ществ, и их накопление может привести к большим неприятностям. При превыше­нии допустимых норм вредных веществ автоматическая система хрома­тографа дает ко­манду прибору, который очищает воздух.

Термически лабильные вещества с низкой летучестью можно ана­лизировать методом сверхкритической флюидной хроматографии (разновидность ГХ). В этом методе в ка­честве подвижной фазы ис­пользуют вещества в сверхкритическом состоянии при вы­соких давле­нии и температуре. Это могут быть диоксид углерода, н-пентан, изо-пропа­нол, диэтиловый эфир и др. Чаще применяют диоксид углерода, который легче пере­вести в сверхкритическое состояние, он нетоксичен, не воспламеняется, является деше­вым продуктом. Преимущество этого метода, по сравнению с методами ГХ и ВЭЖХ, — экспрессность, обус­ловленная тем, что вязкость фаз в сверхкритическом состоянии мала, скорость потока подвижной фазы высокая и время удерживания ком­понентов пробы сокращается более чем в 10 раз. В этом методе ис­пользуют капиллярные ко­лонки длиной 10—15 м, спектрофотометрический или пламенно-ионизационный де­тектор.

Литература:

1. Основы аналитической химии. В 2 кн. Кн. 1 Общие вопросы. Методы разделения: Учебник для ВУЗов/ Ю.А. Золотов, Е.Н. Дорохова, В.И. Фадеева и др.; Под ред. Ю.А. Золотова. - М.: Высш. шк., 1996. - 383 с.: ил.